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Abstract

The objective of the paper is to analyze the formation of social networks
where individuals are allowed to engage in several groups at the same time.
These group structures are interpreted here as social networks. Each group
is supposed to have specific rules or constitutions governing which members
may join or leave it. Given these constitutions, we consider a social network
to be stable if no group is modified any more. We provide requirements on
constitutions and players’preferences under which stable social networks are
induced for sure. Furthermore, by embedding many-to-many matchings into
our setting, we apply our model to job markets with labor unions. To some
extent the unions may provide job guarantees and, therefore, have influence
on the stability of the job market.
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1 Introduction

There are various situations in economic or daily life where individuals organize
themselves in groups, whether for cooperation, coordination, or otherwise. The goal
of this paper is to formalize and examine environments where individuals are allowed
to engage in several groups at the same time. These group structures are interpreted
as social networks in this study.
Depending on the context, formation of these networks occurs for manifold rea-

sons and considering all of them seems to be a virtually impossible venture. In
order to be as general as possible, we abstract from activities carried out within
each group. That is, we suppose the individuals’preferences to directly depend on
the structure of the network. Given these preferences, there might be incentives for
joining or leaving certain groups. The salient point is, however, that individuals are
not necessarily free to deviate. Some members of a group might have certain prop-
erty rights which allow them to block the arrival of new members or even give them
the power to force existing members to stay. We capture this aspect by introducing
the notion of constitution. Each group is supposed to have specific rules govern-
ing both which deviations are feasible and who may decide about the deviations.
Therefore, the formation of social networks not only depends on the preferences of
the individuals but also on the property rights granted by the constitutions.
The framework outlined above captures a wide spectrum of possible applications.

A particular one that we are going to discuss in detail is job markets with labor
unions. But one could also mention research collaborations, immigration, or social
clubs, for instance. These examples already indicate that the rules or constitutions
governing which members may join or leave a group may vary greatly. For instance,
in some groups it might be possible to dismiss members but in others there might be a
protection against this. Or, in some groups entry might be free but in others it might
require the consent of other members. Therefore, the constitutional design may
have a significant impact on the formation of social networks. Consequently, we are
interested in addressing the following questions: What happens in terms of stability
if more blocking power is given to the individuals? Under which circumstances is it
possible to find constitutions which guarantee the stability of social networks?
The formation of social groups is of fundamental interest and it has been ex-

amined from numerous angles. For instance, Ellickson et al. (1999, 2001) as well
as Allouch and Wooders (2008) analyze this issue in the context of general equi-
librium theory, Acemoglu et al. (2012) provide a dynamic model for studying the
stability of societies, and Page and Wooders (2010) formalize club formation as a
non-cooperative game, to name but a few. In fact, providing a complete overview
over all publications dealing with group formation in a broader sense would exceed
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the scope of nearly every paper due to the great complexity and diversification of
the field. Therefore, the following survey restricts on most closely related branches
and outlines which publications particularly influenced our work.
Analyzing group formation but abstracting from activities carried out within

each group obviously relates to hedonic coalition formation (e.g., Banerjee et al.,
2001; Bogomolnaia and Jackson, 2002). Moreover, studies dealing with economic
networks (e.g., Jackson, 2008) or with matching markets (e.g., Roth and Sotomayor,
1990) can also be embedded into our setting. Thus, we contribute indirectly to a
stream of literature where the authors combine coalition formation and matching
problems (e.g., Cesco, 2012; Pycia, 2012). However, the way we model social net-
works and preferences is closer to models frommatching theory where individuals are
not only concerned about which groups they belong to but also about who the other
members of the groups are (e.g., Dutta and Masso, 1997; Echenique and Yenmez,
2007; Kominers, 2010).
One of the main contributions of this paper is to formalize constitutional rules

within a hedonic setting. This approach is in spirit with some other publications
from literature, like Bala and Goyal (2000), Page and Wooders (2009), or Jehiel and
Scotchmer (2001), for example. These papers analyze which networks or coalition
structures might be expected to emerge under several specific rules governing net-
work or coalition formation, respectively. However, the aforementioned works differ
from ours in at least one important aspect. For analyzing which social networks
are likely to occur we focus on constitutionally stable networks. A social network is
considered to be constitutionally stable if no group of players is modified any more.
The salient point is that, in our framework, the stability of a network depends on
explicitly modeled constitutions. In the above-mentioned papers, on the contrary,
the constitutional rules are varied only implicitly by discussing different stability
concepts. For this reason, our approach not only achieves greater generality but
it also allows separating more clearly which influence constitutional rules have on
group formation.
The analysis conducted in this paper is twofold. On the one hand, we focus on the

question whether constitutionally stable networks actually exist and, on the other,
we discuss whether they might be reached given that the players apply a “trial-and-
error strategy”. To this end, we follow Roth and Vande Vate (1990). In the context
of marriage problems (or two-sided one-to-one matchings), the authors introduced
a Markov process which always results in a stable matching with probability one,
even if the individuals act myopically. Later, this work has been extended and
varied in several ways (e.g., Chung, 2000; Diamantoudi et al., 2004; Klaus et al.,
2010; Kojima and Unver, 2008). In our study, we use basically the same approach
but we adopt the terminology of Jackson and Watts (2001, 2002) who examined a
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similar random process but focused on stochastic stability of economic networks. By
means of the notion of improving paths, we formulate requirements on constitutions
and preferences guaranteeing that from every social network there always exists
an improving path leading to a stable network. It turns out, in fact, that this is
equivalent to requiring the existence of a specific version of a common ranking (cf.
Banerjee et al., 2001; Farrell and Scotchmer, 1988). We also find that giving more
blocking power to the individuals does not necessarily lead to more stability. Indeed,
higher blocking power might destroy the existence of the common ranking.
Although the main purpose of this paper is to discuss the formation of social

networks in general, the last part is devoted to a particular application, namely to
job markets with labor unions. Applying the general results obtained in the sections
before allows us to judge, for different levels of unions’strength, whether the job
market is likely to become stable or not. In doing so we also find a variation of Roth’s
“polarization of interests”(cf. Roth, 1984) between employers and employees.
The remainder of the paper proceeds as follows. Section 2 introduces the model

and the formal definitions of social networks and constitutions. In Section 3, we
discuss conditions for the existence of strongly stable networks. In Section 4, we
apply the corresponding results to our model of job markets. Finally, Section 5
contains the conclusions.

2 The Model

Let N = {i1, . . . , in} be a finite set of players and let M = {c1, . . . , cm} be a finite
set of connections.

Definition 1. A social network h is a mapping h : M −→ 2N assigning to each
c ∈M a subset of players.1

A social network h indicates which players are members of which connections.
For each i ∈ N let Mh(i) = {c ∈ M | i ∈ h(c)} be the set of connections player i is
a member of. The set of all social networks is denoted by H, and the cardinality of
H is |H| = 2mn. A particular special case is the empty social network h∅ ∈ H, with
h∅(c) = ∅ for all c ∈M . That is, no player is contained in any connection.

Example 1. Suppose there are three players and four connections, i.e., N =

{i1, i2, i3} and M = {c1, c2,c3, c4}. Consider the case where all players are contained
1Note that the tuple (N,M, h) is simply a mathematical hypergraph. Therefore, from a technical

point of view our definition of social networks also relates to the notions of conference structures
(e.g., Myerson, 1980), many-to-many matchings (e.g., Roth, 1984) and social environments (e.g.,
Fershtman and Persitz, 2012).
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in c1, the players i2 and i3 are also contained in c2 and c3, while c4 only contains i1.
This can be described formally by means of the following social network h (see also
Figure 1):

h(c) =


{i1, i2, i3} , if c = c1

{i2, i3} , if c ∈ {c2, c3}
{i1} , if c = c4.
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Figure 1: The social network h.

2.1 Constitutions

Each i ∈ N is supposed to have rational preferences �i over H. The tuple � =

(�i)i∈N is called a preference profile. Depending on the preferences, players might
have incentives to alter some connection in a given network. For modeling formally
how a connection can be modified we use the symmetric difference ± defined by
D′±D = (D′ \D)∪ (D\D′) for all D′, D ⊆ N . Correspondingly, given a connection
c ∈ M and a subset of players D ⊆ N , let h ± (c,D) be the social network that is
obtained from h ∈ H if c is modified by the players in D. More specifically, players
in D ∩ h(c) leave the connection and players in D \ h(c) join it.2 Formally:

(h± (c,D))(c′) :=

{
h(c)±D if c = c′

h(c′) if c 6= c′
(1)

If D ∩ h(c) = ∅, we just write h + (c,D) instead of h ± (c,D) to stress the fact
that no player leaves the connection. If D ⊆ h(c), we just write h − (c,D) instead
of h± (c,D) to indicate that no player joins the connection.

2We use ± instead of the usual symbol M for denoting the symmetric difference, in order to
emphasize that it might be possible that at the same time new members enter a connection while
other members leave it.
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The central assumption in our model is that each connection could have differ-
ent rules governing the exit of already existing members and/or the arrival of new
members. That is, we introduce the notion of constitution in order to describe both
the feasible modifications of a given connection and the coalitions whose support
is needed for the modifications to take place. According to these constitutions,
some deviations might be precluded, even if all deviating players would benefit from
altering the connection.

Definition 2. The constitution Cc = (Cch)h∈H of connection c ∈M is a collection of
pairs Cch = (Dch, Sch) where (i) Dch ⊆ 2N \{∅} describes the feasible deviations, and (ii)
for each D ∈ Dch, Sch(D) ⊆ 2h(c) specifies a non-empty set of supporting coalitions.

That is, for all c ∈M and h ∈ H, Cch consists of two components. The first one,
Dch, specifies which modifications (with respect to the deviations formalized in (1))
of the connection c are possible. Of course, it might be the case that Dch = 2N \ {∅}
and then there are no restrictions on feasible deviations. In many applications,
however, certain changes of a connection are not possible due to capacity constraints
or legal requirements, for example, and this is captured by Dch. Moreover, in order to
modify c, each deviating group D ∈ Dch needs the support of at least one supporting
coalition S ∈ Sch(D). If there exists no such S, the deviation D is blocked. Note
that ∅ ∈ Sch(D) is allowed, too. In this case, the players in D ∈ Dch do not need the
consent of any member of the connection for deviating. Moreover, if S ∈ Sch(D)\{∅},
we assume S ′ ∈ Sch(D) for all S ′ ⊇ S. That is, if S is a supporting coalition for
a certain deviation, all coalitions containing S also have the power to support this
deviation. In the following, let C := (Cc)c∈M . The tuple (N,M,�, C) is called a
society.

Example 2. Let N = {i1, . . . , in} and M = {c1, c2, c3}. As an example consider
the following three specific constitutions:

(i) If Dc1h = {D ⊆ N | |h(c1)±D| ≤ 9, D 6= ∅} and Sc1h (D) = {S ⊆ h(c1) | 2 · |S| >
|h(c1)|} for all h ∈ H and D ∈ Dc1h , the players have to respect a quota of nine
and decisions are taken by means of the majority rule.

(ii) Suppose Dc2h = {D ⊆ N | l ≥ 3 ∀ il ∈ D,D 6= ∅} and Sc2h (D) = {S ⊆
h(c2) |h(c2)∩D ⊆ S} for all h ∈ H and D ∈ Dc2h . This reflects the case where
deviations require certain qualifications. In this specific example, players need
an index of at least three. Moreover, none of the members has property rights
for the connection. If a deviation is feasible, the corresponding players have
the power to support themselves, i.e., they are free to enter or exit.
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(iii) Let Dc3h = 2N \{∅} and Sc3h (D) = {S ⊆ h(c3) | il̄ ∈ S, where l̄ ≥ l ∀ il ∈ h(c3)}
for all h ∈ H andD ∈ Dc3h . Here, all deviations are feasible and the player with
the highest index acts as a kind of dictator and has perfect property rights.
That is, she may decide about both: whether players may join the connection
as well as whether they may leave it.

2.2 Stability

For analyzing which social networks might be expected to emerge we propose a
notion of stability which requires that no single connection is altered any more.

Definition 3. Given the society (N,M,�, C), a social network h is constitutionally
stable with respect to the constitutions C if for all c ∈M and D ∈ Dch we have that:
(i) h �i h ± (c,D) for at least one i ∈ D \ h(c) or (ii) in each supporting coalition
S ∈ Sch(D) there is a player j ∈ S with h �j h± (c,D).

Expressed in words, a social network h ∈ H is constitutionally stable if and
only if for any connection c ∈ M and any feasible modification D ∈ Dch, at least
one of the players joining c does not strictly benefit from deviating or at least one
of the members of every supporting coalition S ∈ Sch(D) is not strictly better off
from the deviation.3 Therefore, we assume that moving from h ∈ H to h ± (c,D)

does not necessarily need the consent of players leaving c. That is, some members
of the connection might have the power to force other members to leave c even
when the excluded players suffer from this exclusion. On the other hand, a player
who is not in c ∈ M cannot be forced to join c. Only if she strictly benefits, she
will join it. In the following, let ST (C) denote the set of constitutionally stable
networks with respect to the constitutions C. Moreover, given h ∈ H, let Ach(C) :=

{D ∈ Dch | ∃S ∈ Sch(D) such that h± (c,D) �i h ∀i ∈ (D \ h(c)) ∪ S} be the set of
all feasible deviations causing an instability in c ∈ M . Notice that if D ⊆ h(c),
D ∈ Dch, and ∅ ∈ Sch(D), the deviation of D causes an instability by definition
although it might be the case that nobody benefits from this modification. In order
to exclude exogenous instabilities like these, we will assume ∅ /∈ Sch(D) whenever
D ⊆ h(c).

3Assuming that players only deviate or support a deviation when their payoffs are strictly bigger
has sense when transfers among players are not possible. This is in line with several other stability
concepts from literature, like strong stability of Dutta and Mutuswami (1997), pairwise stability of
Sotomayor (1999), or core stability of Bogomolnaia and Jackson (2002) and Banerjee et al. (2001),
for example.
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3 General Results

Generically constitutionally stable social networks might fail to exist and this leads
to the question of how the design of constitutions affects the (non-)existence of
stable social networks. For approaching this issue, let us start with a straightforward
and plausible attempt. Suppose the constitutions grant the players a certain level
of blocking power. That is, the members of each connection might have certain
property rights allowing them to inhibit modifications of the connection which are
not conform to their own preferences.

Remark 1. Let two societies (N,M,�, C) and (N,M,�, C̄) be given and assume
C ⊆ C̄, i.e., Dch ⊆ D̄ch and Sch(D) ⊆ S̄ch(D) for all h ∈ H, c ∈M , and D ∈ Dch. Then,
ST (C̄) ⊆ ST (C).
The remark follows directly from the definition of constitutional stability. If

the sets of feasible deviations and supporting coalitions shrink, the blocking power
of each individual player increases and the set of constitutionally stable networks
might become larger. However, although the reasoning is very intuitive it might
be misleading. In fact, whether more blocking power really implies more stability,
strongly depends on the perspective of stability. On the one hand, there might be
more stable networks but, on the other hand, reaching them might not be possible
any more.
Let us formalize these ideas by adopting the notion of improving paths from

Jackson and Watts (2001, 2002). An improving path is a sequence of networks
that can emerge when players join or leave some connection based on the improve-
ment the resulting network offers relative to the current network (see Jackson and
Watts (2002), p.51). Each network in the sequence differs from the previous one in
that one connection is modified by a deviating coalition. This requires that every
player joining the connection strictly prefers the resulting network to the current
one. Moreover, the deviation should not be blocked and, hence, there should be a
supporting coalition that strictly benefits from the deviation.

Definition 4. An improving path from h0 ∈ H to hk ∈ H is a sequence of networks
(h0, h1, . . . , hk) such that for all 0 ≤ l < k there is exactly one cl ∈ M with hl+1 =

hl ± (cl, Dl) for some Dl ∈ Aclhl(C).

If there exists an improving path from h ∈ H to h′ ∈ H, we write h 7→ h′.
Moreover, let I(h) = {h′ ∈ H | h 7→ h′} be the set of networks that can be reached
by an improving path starting at h.4 Notice that h is constitutionally stable if and
only if I(h) = ∅.

4Note that in improving paths the players are implicitly assumed to care only about the im-
mediate benefit of deviating to the next network but they do not forecast how others might react
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A set of networks H ⊆ H is closed if there is no improving path leading out of
it, i.e., I(h) ⊆ H for all h ∈ H. Moreover, a set of networks H ⊆ H with |H| ≥ 2 is
a cycle if for any pair h, h′ ∈ H, there exists an improving path connecting h to h′.

Lemma 1. Let the society (N,M,�, C) be given. There exists no closed cycle if and
only if, for each network h ∈ H that is not constitutionally stable, there exists an
improving path leading from this network to a constitutionally stable one.

Proof. We will show the reverse statement of Lemma 1. If there exists a closed cycle
H, by definition there exists no improving path from any h ∈ H to a constitutionally
stable network. This already proofs the first direction. Now suppose there exists
a network h ∈ H such that there is no constitutionally stable network in I(h).
Therefore, this set I(h) must contain at least one cycleH1. SupposeH1 is a maximal
cycle, i.e., it is not a proper subset of any other cycle. Now, either H1 is closed and
we are done, or it has an improving path going out of it, leading to a new maximal
cycle H2. Note that H1 ∩H2 = ∅. If H2 is not closed, one can iterate the previous
steps and because I(h) is finite, we will finally reach a closed cycle.

Our Lemma 1 is a modification of Lemma 1 from Jackson and Watts (2002).5

The non-existence of closed cycles not only implies existence of stable networks but
it also guarantees stability in case the agents follow a “trial-and-error”strategy and
care only about immediate benefits. In order to make this later point more spe-
cific consider the following random process which has been introduced for marriage
problems by Roth and Vande Vate (1990). Start with an arbitrary network h0 ∈ H.
Each round r ∈ N≥0 a pair (cr, Dr) ∈ M × 2N is drawn randomly with positive
probability. If Dr ∈ Acrhr(C), the process moves to hr+1 := hr ± (cr, Dr). Otherwise
it remains at hr+1 := hr.

Proposition 1. Let the society (N,M,�, C) be given. The random process described
above always (i.e., for all h0 ∈ H) converges with probability one to a constitutionally
stable network if and only if there are no closed cycles.

In the context of one-to-one matching problems, the previous result has been
established by Roth and Vande Vate (1990) for one-to-one matching problems. Since

to their actions. This approach relates to myopic learning (e.g., Kandori et al., 1993, Kandori and
Rob, 1995; Monderer and Shapley, 1996) and is appropriate in relatively complex settings where it
is diffi cult to anticipate all possible changes. In the context of coalition or network formation some
authors have relaxed this assumption by analyzing farsighted stability (see, e.g., Herings et al.,
2009; Page and Wooders, 2009; Page et al., 2005). Conducting similar studies in our framework is
left for future work.

5The authors have shown in slightly different terms that it is possible to find “pairwise-stable”
networks if there exists no closed cycle.
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the reasoning is the same, we omit the proof. But the intuition is straightforward.
Since every feasible deviation is drawn with positive probability, also every improving
path has a positive probability. Therefore, if for every starting point there is an
improving path leading to a constitutionally stable network, the random process
converges to one of these networks for sure whenever it is not stopped after finitely
many steps. This is particularly remarkable as in our model, network formation is
not guided by a social planner or the like. Given the random process introduced
above, non-existence of closed cycles is suffi cient for guaranteeing that a society
induces a constitutionally stable network with probability one even if the players
act myopically and the deviations are not organized in a centralized way.

Proposition 2. Let N , M , and � be given. Let C ⊆ C̄. Then, non-existence of
closed cycles under C̄ does not imply that there are no closed cycles under C.

Proof. In order to proof the proposition, it is suffi cient to construct a suitable
example. The one we consider here is a variation of an example from Bogomol-
naia and Jackson (2002) and Diamantoudi et al. (2004). There are three players
N = {i1.i2, i3} and one connection M = {c}. Thus, |H| = 8. The networks are
given by:

h1(c) h2(c) h3(c) h4(c) h5(c) h6(c) h7(c) h∅

c {i1} {i2} {i3} {i1, i2} {i1, i3} {i2, i3} {i1, i2, i3} ∅
and the players’preferences are

h4 �i1 h7 �i1 h5 �i1 h1 �i1 h2 ∼i1 h3 ∼i1 h6 ∼i1 h∅

h6 �i2 h7 �i2 h4 �i2 h2 �i2 h1 ∼i2 h3 ∼i2 h5 ∼i2 h∅

h5 �i3 h7 �i3 h6 �i3 h3 �i1 h1 ∼i3 h2 ∼i3 h4 ∼i3 h∅.

The setting is actually not completely the same as in Bogomolnaia and Jackson
(2002), because in their paper the authors study coalition formation (i.e., the set of
players is always decomposed into a partition) while we have just one connection
containing some of the players. However, “core stability”in their setting corresponds
to constitutional stability with respect to the following constitutions C = (D,S):

Dch = 2N \ {∅} and Sch(D) = {S ⊆ h(c) | (h(c) \D) ⊆ S,S 6= ∅} (2)

for all h 6= h∅. Given C, a priory all modifications of the connection are feasible and
a deviation D 6= h(c) takes place if and only if all members of the resulting network
benefit from deviating, i.e., h ± (c,D) �i h for all i ∈ h(c) ±D. This implies that
players who are undesired can be dismissed if the other members agree on this. For
the (pathological) special case of D = h(c), it is required that at least one player
has to approve the deviation in order to avoid exogenous instabilities. Now, given
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the constitutions as defined in (2), Diamantoudi et al. (2004) already pointed out
that h7 is the unique constitutionally stable (or “core stable”, respectively) network
and H := {h4, h6, h5} forms a closed cycle. In fact, once H is reached, there is
no improving path leading to h7 because the players act too myopically. However,
consider the following constitutions C̄ = (D̄, S̄). Let D̄ch = 2N \ {∅} and

S̄ch(D) =

{S ⊆ h(c) | (h(c) \D) ⊆ S, S 6= ∅} , if D ∩ h(c) 6= ∅
{S ⊆ h(c) |S 6= ∅} , if D ∩ h(c) = ∅

for all h 6= h∅. Here, granting access to c just needs the support of only one member
of the connection. This obviously implies C ( C̄ and, thus, the players have less
blocking power (but note that the sets of stable networks coincide). However, in
this case, H does not form a closed cycle any more because for all h ∈ H there is
always one member of c who supports deviating from h to h7. Therefore, given C̄,
there exists no closed cycle.

Proposition 2 dissents Remark 1 in a way. In fact, concluding that more blocking
power leads to more stability is too simplistic. Even if the set of constitutionally
stable networks becomes larger, it could happen that all improving paths leading to
them are severed and closed cycles occur.
Consequently, instead of enhancing the blocking power of the players, it is neces-

sary to find alternative approaches for guaranteeing that the society always induces
a constitutionally stable network. To this end, consider once again the example
constructed in the proof of Proposition 2. Examining it in detail yields that under
C̄ we have h 7→ h7 for all networks h 6= h7 but I(h7) = ∅. Therefore, for all h ∈ H
there exists a unique element in I(h) which is maximal with respect to “7→”. On
the other hand, this is not true under C because H = {h4, h6, h5} forms a closed
cycle and, thus, I(h) = H for all h ∈ H. Although these observations are limited to
this specific example, similar considerations also apply in general.

Definition 5. Given the society (N,M,�, C), a common ranking D is a complete
and transitive ordering over H such that D ∈ Ach(C) implies h± (c,D) D h for all
h ∈ H and c ∈M .

A common ranking D reflects a certain level of consensus between the players.
The main idea is that the set of networks can be decomposed into several equivalence
classes and once a higher class is reached, this will not be reversed afterwards.
Indeed, a deviation takes place only if the joining and supporting players agree that
the resulting network is not contained in a lower class than the current one. Note that
a priory this is not a restriction at all because it would be possible, for instance, to
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choose D in such a way that all networks are equivalent (i.e., h D h′ as well as h′ D h

for all h, h′ ∈ H). This immediately implies that a (not necessarily unique) common
ranking always exists. However, the more consensus about beneficial deviations
between the players, the stronger the restrictions that can be imposed by a common
ranking.

Proposition 3. Let the society (N,M,�, C) be given.

(i) There are no cycles if and only if there exists a common ranking D such that
for all H ⊆ H there is a unique D—maximal network ĥ ∈ H.

(ii) There are no closed cycles if and only if there exists a common ranking D such
that for all h ∈ H there is a unique D—maximal network ĥ ∈ I(h).

For the proof refer to the appendix. The main importance of Proposition 3 is that
it provides an alternative criterion for guaranteeing convergence to a constitutionally
stable network. Item (i) states that requiring non-existence of cycles is equivalent
to requiring the existence of a special common ranking which identifies a unique
maximal element in every subset of networks.6 Moreover, according to (ii), having
this feature only in particular subsets of H is still strong enough for excluding closed
cycles. Therefore, the society induces a constitutionally stable network for sure if and
only if the constitutions allow for a common ranking which is suffi ciently restrictive.
That is, there must be some consent about which feasible deviations are beneficial
and which are not.

3.1 Constitutional Rules and Players’Preferences

The remainder of this section is devoted to the analysis of requirements assuring the
existence of a common ranking which excludes closed cycles. In order to get more
intuition for this, let us consider a stylized example.

Example 3. Suppose there are three players N = {i1, i2, i3} and a unique con-
nection M = {c}. Analogously to the example in the proof of Proposition 2 let
h3(c) = {i3}, h5(c) = {i1, i3}, h6(c) = {i2, i3}, and h7(c) = {i1, i2, i3}. But here, the
corresponding feasible deviations are Dc

h3
= Dc

h5
= Dc

h6
= Dc

h7
= {{i1}, {i2}, {i3}},

while the supporting coalitions are given by Schl(D) = {S ⊆ hl(c) | i3 ∈ S} for all
6A common ranking meets this requirement if and only if it is strict. In this case, it is a variation

of “Generalized Ordinal Potentials” introduced by Morderer and Shapley (1996). In particular,
item (i) of Proposition 3 is closely related to Lemma 2.5 from their publication. Moreover, it also
relates to Theorem 1 in Jackson and Watts (2001).
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D ∈ Dchl where l ∈ {3, 5, 7} and S
c
h6

(D) = {S ⊆ h6(c) | i2 ∈ S} for all D ∈ Dch6 .
Moreover, the players’preferences are supposed to be as follows:

h7 �i1 h5 �i1 h6 ∼i1 h3 �i1 . . .
h7 �i2 h6 �i2 h5 ∼i2 h3 �i2 . . .
h6 �i3 h3 �i3 h5 �i3 h7 �i3 . . .

It is not diffi cult to check that in this case the set H = {h3, h6, h7, h5} forms a closed
cycle because (h3, h6, h7, h5, h3) is an improving path (see Figure 2).
Inspecting this cycle in detail we can find a kind of irregularity in the constitu-

tions: In h3, h5, and h7, player i3 is the only one who may decide about deviations
and she even has the power to exclude the other players from the connection. But
after allowing i2 to enter c and moving to h6, player i3 looses her strong property
rights and i2 is able to grant i1 access to the connection. Moreover, not only the
constitutions exhibit a kind of irregularity but the players also disagree about the
optimal form of the connection. First, as mentioned before, i3 can exclude i1 or i2 in
h7 against their will. If either this exclusion was not possible or the players agreed
to being excluded and did not want to join the connection again, the cycle would be
splintered. Second, both players, i2 and i3, have the power to support a deviation
of player i1. The salient point is that both disagree about whether i1 should be a
member of the connection or not. If there was a common agreement about this, one
of the deviations would be blocked.

h3

h5

h6

h7

-

�

6

?

6

+(c, {i2})

−(c, {i2})

+(c, {i1})−(c, {i1})−(c, {i1})

Figure 2: The cycle H.

As the example illustrates, in general there are three main factors which support
the occurrence of closed cycles:

(i) constitutions might change strongly even if the network itself does not change
much,

(ii) players might be forced to leave a connection against their will, and
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(iii) there might be disagreement between the players who decide about the devi-
ations.

In fact, for guaranteeing the existence of a common ranking which satisfies the
criterion formalized in Proposition 3(ii), it is necessary to control for all these factors.
This implies that we need to find reasonable restrictions on players’preferences and
consistency conditions on the constitutions.

Definition 6. Given a closed set H ⊆ H, the constitutions C = (Cc)c∈M satisfy

• regularity with respect to H if for all h ∈ H and c ∈M we have:

(i) If h̄(c) = h(c)∪D̄ for some h̄ ∈ H and D̄ ⊆ N\h(c), thenDch = Dc
h̄
and for

all D ∈ Dc
h̄
and S̄ ∈ Sc

h̄
(D) there exists S ∈ Sch(D) with S ⊆ S̄ ⊆ S ∪ D̄.

(ii) If D ∈ Dch and S ∈ Sch(D) with S * D, then h(c) \ (S ∪D) /∈ Sch(D).

• protection against eviction with respect to H if for all h ∈ H and c ∈ M it
holds D ∩ h(c) ⊆ S for all D ∈ Dch and S ∈ Sch(D);

• decomposability with respect to H if for all h ∈ H and c ∈ M , we have that
D ∈ Dch implies D′ ∈ Dch and Sch(D) = Sch(D′) for all D′ ⊆ D.

The main motivation of regularity is to exclude the possibility of skipping back
and forth between two networks the whole time: Condition (i) states that the feasible
deviations and corresponding supporting coalitions of each c ∈ M may not vary
extremely whenever c changes. If further players are added to the connection, the
feasible deviations are supposed to remain the same and supporting coalitions change
only as long as they might be complemented by new members. Thus, together with
(ii) this implies that if a coalition S ∈ Sch(D) has the authority to support a deviation
D ∈ Dch, this cannot be reversed by another coalition which is neither associated to
S nor to D.
If the constitutions satisfy protection against eviction, no player can be forced to

leave a connection c ∈M if she does not want to do it. Modifying c always requires
the consent of all deviating players (not only the consent of players who join the
connection).
Decomposable constitutions exhibit a kind of independence property. If the de-

viation of a group of players is feasible, deviations of any subgroup of players are
feasible as well and the corresponding supporting coalitions do not change.

Definition 7. A preference profile �

13



• satisfies self-concern if h ∼i h̄ for all i ∈ N and each pair of networks h, h̄ ∈ H
with Mh(i) = Mh(i) and h(c) = h̄(c) for all c ∈Mh(i).

• is lexicographic if each agent i ∈ N has a preference ordering �̂i over 2M such
that Mh(i) �̂

i
Mh(i) implies h �i h̄ for all h, h̄ ∈ H with Mh(i) 6= Mh(i).

• is uniform if for all i ∈ N , c ∈ M , and h, h̄ ∈ H with i ∈ h(c) = h̄(c),
h − (c, {k}) �j h implies h̄ − (c, {k}) �i h̄ and h �j h − (c, {k}) implies
h̄ �i h̄− (c, {k}) for j ∈ h(c), k ∈ h(c) \ {i, j}.

• is equable if for all i ∈ N , c ∈ M , and h, h̄ ∈ H with i ∈ h(c) = h̄(c),
h �j h−(c, {j}) for some j ∈ h(c) implies h̄ �i h̄−(c, {i}) and h−(c, {j}) �j h
for some j ∈ h(c) implies h̄− (c, {i}) �i h̄.

• is separable if for all i ∈ N , c ∈M , and h, h̄ ∈ H with i ∈ h(c) ⊆ h̄(c) the two
following conditions are satisfied:

(i) h̄− (c,D) �i h̄ if and only if h− (c,D) �i h for all ∅ 6= D ⊆ h(c) \ {i}.

(ii) h̄+ (c,D) �i h̄ if and only if h+ (c,D) �i h for all ∅ 6= D ⊆ N \ h̄(c).

Self-concern is a kind of independence property. Player i neither benefits nor
suffers if the network changes in such a way that i is not affected directly.
The definition of lexicographic preferences is adapted from Dutta and Masso

(1997). Under this requirement, player i ∈ N is mainly concerned about the con-
nections themselves where she is a member of and less about who the other members
are. Only if Mh(i) = Mh(i), might she care about the other players in her connec-
tions.
If the preferences of the players are uniform and a player leaves a connection,

either all remaining members benefit from this deviation or none of them. Note that
this is supposed to be independent of the form the other connections have.
Under equability player i ∈ N wants to stay in a connection c ∈ M only if the

other members also want to stay. Suppose, for example, the connections generate
a payoff which is distributed equally among the members. Then, if a player has an
incentive to leave c, the same goes for i.
Separability as introduced here is a variation of the same-named concept from

Banerjee et al. (2001). The idea is that player i’s support for a certain leaving or
joining group D is independent of the form the connection actually has.
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3.2 Non-existence of (Closed) Cycles

Now, combining the restrictions introduced in the previous subsection allows formu-
lating conditions which guarantee non-existence of (closed) cycles and the conver-
gence to a constitutionally stable network.

Proposition 4. Let a society (N,M,�, C) be given where all constitutions satisfy
protection against eviction with respect to a closed set H ⊆ H. If the players’
preferences satisfy equability and self-concern, there exist no cycles in H.

All proofs of this subsection are relegated to the appendix. The requirements of
Proposition 4 reflect the three factors identified above which might cause instabil-
ities. Equability and self-concern, for example, impose restrictions on the players’
preferences. Both conditions together guarantee that there is only little disagreement
about the optimal form of each connection c ∈ M . Moreover, protection against
eviction with respect to H has two consequences. On the one hand, as the definition
directly implies, players cannot be forced to leave a connection if they do not agree
to this. On the other hand, indirectly it also ensures that the constitutions do not
change too strongly whenever a connection is altered. More specifically, S ∈ Sch(D)

implies h(c) \ S /∈ Sch(D) for all h ∈ H, c ∈ M , and D ∈ Dch. The interpretation is
similar to regularity. If S has the power to support a deviation of D, this cannot be
reversed by other supporting coalitions.

Proposition 5. Let a society (N,M,�, C) be given where all constitutions satisfy
protection against eviction with respect to a closed set H ⊆ H. If the players’
preferences are lexicographic, there exist no cycles in H.

The intuition of the previous result is similar to the intuition of Proposition 4.
Obviously, the only difference is that the preferences are not supposed to satisfy
equability and self-concern but here they are lexicographic. Therefore, even if there
is some disagreement about the optimal form of the connections, it is relegated to a
secondary role.
Both previous propositions exclude the existence of not only closed cycles but

even of cycles in general. To some extent this is caused by protection against eviction.
Indeed, it is not possible to drop or to relax this assumption without reinforcing the
requirements on players’preferences.

Proposition 6. Let a society (N,M,�, C) be given. Assume all constitutions are
decomposable and regular with respect to a closed set H ⊆ H. Moreover, suppose
the players’preferences are separable, uniform, equable and they satisfy self-concern.
Then, there exist no closed cycles in H.
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As the definition directly implies, regularity inhibits the constitutions from vary-
ing too extremely and, similar to Proposition 4, equability and self-concern guaran-
tee a certain degree of consent about the optimal form of the network. In addition
to this, due to separability and uniformity, in most situations the players are not
forced to leave their connections if they do not agree to this. If, for example, some
player’s entry is supported by a certain coalition, the corresponding members will
not change their minds, even if the connection is altered strongly. Thus, the player
will only leave again if she has an incentive for deviating.
Note that similar to Proposition 4, it is required that the preferences satisfy

equability and self-concern together. Consequently, and as before, it is possible to
replace both assumptions in Proposition 6 by lexicography. The intuition is the
same: The optimal form of the connections is relegated to a secondary role.

Proposition 7. Let the society (N,M,�, C) be given. Assume all constitutions are
decomposable and regular with respect to a closed set H ⊆ H. Moreover, suppose
the preferences of the players are separable, uniform and lexicographic. Then, there
exist no closed cycles in H.7

4 Many-to-many Matching Markets

One of the most interesting features of our model is its versatile applicability since
overlapping group structures appear in many environments. Consider, for example,
many-to-many matching markets. The main primitives of these markets are two
finite sets of players E and F , where the members of E are usually interpreted
as employees (or workers) and the members of F as firms (see,e.g., Roth, 1984).
A (two-sided) many-to-many matching µ ⊆ E × F is then simply a collection of
worker-firm pairs indicating which employees are working for which firms. Both
sides of the market, i.e., all players in E as well as all players in F , are supposed to
have preferences over all possible matchings. Thereby, the employees are classically
assumed to care only about which firms they work for but not about who their
co-workers might be. The owners, on the other hand, are only concerned about the
employees working for their firm:
“This involves an assumption that workers are indifferent to who their co-workers

might be, and firms are indifferent to whether their employees moonlight at other
jobs.”

(Roth, 1984, P. 51)

7Although the proof proceeds similarly as the one of Proposition 6, the main idea is partially
based on Section 5 of Sotomayor (1999).
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Many-to-many matching markets can be embedded into our setting in a straight-
forward way. Let each c ∈M represent a firm, i.e., M := F . Since in our model the
connections do not act as players, we suppose that each firm c ∈M has exactly one
owner oc ∈ O. That is, we assume that the set of players N := E∪O can be decom-
posed into two (disjoint) subsets, the employees E and the owners O. Given these
preliminaries, each matching µ ⊆ E × F can be represented by the social network
hµ ∈ H which is defined via hµ(c) = {i ∈ E | (i, c) ∈ µ}∪{oc} for all c ∈M = F . In
order to be in line with classical literature on many-to-many matchings, we assume
that each owner has no incentive for leaving her firm or for joining any other firm,
i.e., we are only interested in the case O ∩ h(c) = {oc} for h ∈ H and c ∈M .8 Nev-
ertheless, since we do not exclude certain network structures a priori, for technical
reasons, we also have to define preferences over networks where this requirement
is not met. Roth’s assumptions on players’preferences imply that each employee
i ∈ E is indifferent among all networks where she is working for the same set of
firms, i.e., h ∼i h̄ for all h, h̄ ∈ H with Mh(i) = Mh̄(i). Moreover, given c ∈ M and
O ∩ h(c) = {oc}, the assumptions also imply h ∼oc h̄ whenever h(c) = h̄(c). For the
(pathological) case where O∩h(c) 6= {oc}, we assume h± ((O ∩ h(c))± {oc}) �oc h.
Therefore, the preferences of all employees are lexicographic; and restricted to the
set H := {h ∈ H | O ∩ h(c) = {oc} ∀ c ∈M} the same holds for the owners, too.
Since our model is richer than the classical matching approach (in particular,

social networks as defined here might be interpreted as one-sided many-to-many
matchings), it consequently enables us to model job markets in a more realistically.
Complementing this, our formalization of constitutions allows us studying different
levels of authority of the owners in a flexible way. For instance, in many countries
(especially in Europe) employees are organized in labor unions representing the in-
terests of their members. These unions may guarantee a quite strong protection
against dismissal to the workers and, in the short run, the consent of a worker is
needed if the owner wants her to leave the firm. Many-to-many matching theory,
however, usually concentrates on job markets without strong protection against dis-
missal like the US job market, for example, and neglects the impact of labor unions.
Due to its versatility our model provides an appropriate framework for examining
and comparing these different job markets in a convenient way. The remainder of
this section is therefore devoted to studying the existence of constitutionally stable
networks in three environments that differ in the level of authority that the owners
could have.

8Thus, we do not consider the possibility of changing the owner. But from a technical point of
view it would not be diffi cult to include this feature into the model.
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4.1 Protection against Dismissal

In the following, we will always assume that the employees are allowed to accept
as many jobs as they want to. Moreover, the firms have unlimited capacity to
hire workers, i.e., given O ∩ h(c) = {oc} for h ∈ H and all c ∈ M , every possible
deviation of the employees is feasible. Nevertheless, quotas could be included easily
by allowing only for deviations of subsets which respect a maximal firm size. For
sake of completeness, we also have to consider the case where an owner is not part of
her firm or other owners are contained in it. Then, we assume that the only feasible
deviation is to add the owner and to delete all other owners.

Dch =

2E, if O ∩ h(c) = {oc}
(O ∩ h(c))± {oc}, if O ∩ h(c) 6= {oc}

(3)

First we consider the case where unions may guarantee a quite strong protection
against dismissal to the workers and the owners do not have the authority to fire
them. However, the owner is the only one who may decide about hiring new workers.
But each employee is always free to terminate her job if she has an incentive to do
it. These considerations lead to the following set of supporting coalitions:

Sch(D) =


{S ⊆ h(c) | D ∩ h(c) ⊆ S and oc ∈ S}, if O ∩ h(c) = {oc} and D * h(c)

{S ⊆ h(c) | D ⊆ S}, if O ∩ h(c) = {oc} and D ⊆ h(c)

{∅}, if O ∩ h(c) 6= {oc}

Note that for the case of O ∩ h(c) 6= {oc}, we assume that the empty set is the
only supporting coalition and, thus, these networks are not stable by construction.

Corollary 1. There are no cycles in “Protection against Dismissal”.

Proof. This follows immediately from Proposition 5 because the players’preferences
are lexicographic and we also have protection against dismissal with respect to the
closed set H.

At first sight, the previous result might be slightly surprising because in many
studies about two-sided many-to-many matchings the existence of stable matchings
is an issue (e.g., Sotomayor, 2004). This is mainly due to the fact that this literature
examines environments where the owners are free to fire a worker if they benefit from
it. Indeed, protection against dismissal is the driving force of the previous result.
Let ST PD denote the set of stable networks in Protection against Dismissal. Notice
that this set contains the worker-optimal networks which are defined as follows.
Suppose M̄ i ⊆M is a set of firms which is mostly preferred by player i ∈ E. Then,
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if hwo is given by hwo(c) = {i ∈ E | c ∈ M̄ i} ∪ {oc} for all c ∈M , every employee is
assigned to a set of firms she preferably wants to work for and, thus, she obviously
has no incentive for deviating.

4.2 Hire and Fire

Let us now focus on job markets without strong protection against dismissal. Trans-
lated to the model considered here, this means that the owners have the right to
fire workers even if these do not agree to leaving. This aspect can be captured by
considering the following supporting coalitions:

Sch(D) =


{S ⊆ h(c) | oc ∈ S}, if O ∩ h(c) = {oc}, D * h(c)

{S ⊆ h(c) | D ⊆ S or oc ∈ S}, if O ∩ h(c) = {oc}, D ⊆ h(c)

{∅}, if O ∩ h(c) 6= {oc}

Let ST HF be the set of stable networks in “Hire and Fire”. Note that Remark 1
implies ST HF ⊆ ST PD. However, it is well known that without further assumptions
the existence of stable networks in Hire and Fire is not assured (as can be easily seen
by means of an example with two workers and two firms). Thus, in order to exclude
existence of closed cycles it is necessary to impose further restrictions on constitu-
tions or preferences. For instance, we could proceed similarly as in Proposition 7
since the preferences of the employees are lexicographic and the constitutions in Hire
and Fire are not only decomposable but also regular with respect to H. However,
it is not necessary to impose such strong assumptions as in Proposition 7. Since
the owners are the only players who have decision making power and because they
never leave their firm, uniformity is not needed and it is suffi cient to additionally
assume that the owners’preferences are separable.

Proposition 8. If the preferences of the owners are separable, there exists no closed
cycle in Hire and Fire.

Remark 2. This proposition is in line with several other well-known publications
from the literature, like the papers from Roth and Vande Vate (1990), Chung (2000),
Diamantoudi et al. (2004), and especially Kojima and Unver (2008). Similar to our
result, Kojima and Unver (2008) have shown in the context of two-sided many-to-
many matchings that if workers and owners have, respectively, “substitutable”(see
Roth, 1984) and “responsive”(see Roth, 1985) preferences, then there always exists
an improving path leading to a stable matching. In fact, the assumptions we impose
in Proposition 8 are less restrictive. Given the preferences defined at the beginning
of this section and if only deviations of single players are feasible, responsiveness of
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the owners’preferences implies separability which in turn implies substitutability
(converse implications do not hold). Therefore, Proposition 8 complements their
findings.

Although we have ST HF ⊆ ST PD, the converse inclusion does not necessarily
hold. Therefore, there might exist networks which are stable in Protection against
Dismissal that would not be stable if the owners’ level of authority is suffi ciently
high. In particular, due to the characteristics of Hire and Fire, if h ∈ ST PD but
h /∈ ST HF, there is at least one owner who would like to fire some of her employees
against their will. This already indicates that the interests of both sides of the
market might be opposed in a way. For deepening these considerations further we
need to enhance separability.

Definition 8. A preference profile � is strongly separable if for all i ∈ N , c ∈ M ,
and h, h̄ ∈ H with i ∈ h(c) ⊆ h̄(c), the two following conditions are satisfied:

(i) h̄− (c,D) �i h̄ if and only if h− (c,D) �i h for all ∅ 6= D ⊆ h(c).

(ii) h̄+ (c,D) �i h̄ if and only if h+ (c,D) �i h for all ∅ 6= D ⊆ N \ h̄(c).

As the name implies, strong separability is a stronger requirement than separa-
bility. Again, player i’s support for a certain leaving or joining group is independent
of the other members of the connection. But, under strong separability, this is also
true if i belongs to the deviating group, i.e., if i leaves the connection. Translated
to Hire and Fire, this basically means that i’s preference about whether to work for
a firm c ∈M or not is independent of the other firms she is working for.

Proposition 9. Assume the workers’ preferences are strongly separable and the
owners’ preferences are separable. Moreover, suppose the worker-optimal network
hwo is uniquely determined. Then, hwo ∈ ST HF if and only if ST PD = ST HF.

Proof. If ST PD = ST HF, then also hwo ∈ ST HF because hwo is always stable in
Protection against Dismissal and there remains nothing to show. For the other
direction, suppose the statement is not true, i.e., hwo ∈ ST HF but ST HF ( ST PD.
Let h̄ ∈ ST PD \ ST HF. Then, there must be an owner oc who would block h̄ if her
property rights are strong enough, i.e., there exists an employee i ∈ h̄(c) such that
h̄ − (c, {i}) �oc h̄. Because oc’s preferences are separable and hwo is stable, this
implies i /∈ hwo(c). Otherwise, the owner would also have an incentive to dismiss
the employee in hwo. Thus, uniqueness of hwo yields that i strictly prefers hwo to
hwo + (c, {i}). In particular, because her preferences are supposed to be strongly
separable, she would also have a strict incentive for leaving connection c at h̄, but
this contradicts the stability of this network.
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Proposition 9 is in line with Roth (1984). Under the requirement that the pref-
erences of the owners and employees are substitutable, the author finds a “con-
flict of interest between agents on opposite sides [of the market]” (Roth (1984),
p.47). A similar conflict also arises here: Given (strong) separability of the play-
ers’preferences, the stable outcome which would be blocked first by the owners is
the worker-optimal network. Indeed, this fact is completely independent of specific
working conditions such as wages or the working environment, for example, because
we abstract from factors like these. Moreover, as will be shown in the following, the
conflict becomes even stronger if the owners’level of authority is raised higher.

4.3 Slavery

Roughly speaking, “Slavery”is the counterposition of Protection against Dismissal.
Here, the owners not only have the power to decide about new employees but also
about whether workers may leave their firm or not:

Sch(D) =


{S ⊆ h(c) | oc ∈ T}, if O ∩ h(c) = {oc} and D * h(c)

{S ⊆ h(c) | oc ∈ T}, if O ∩ h(c) = {oc} and D ⊆ h(c)

{∅}, if O ∩ h(c) 6= {oc}

By applying Proposition 5 we get the following result:

Corollary 2. Every improving path in Slavery leads to a constitutionally stable
network.

Let ST SL be the corresponding set of stable networks.
Remark 3. It is easy to check that a network is stable in Hire and Fire if and only if
it is stable in Protection against Dismissal and Slavery, i.e., ST HF = ST PD ∩ST SL.
But it might be the case that the intersection of the sets of stable networks is
empty. However, according to Corollary 1 and Corollary 2 there exist no cycles in
Protection against Dismissal and Slavery. Therefore, a simple algorithm for finding
stable networks in Hire and Fire (in case they exist) is to determine the sets of
maximal elements of all improving paths in the two other settings and to check
whether the intersection of these sets is non-empty.

Analogously to worker-optimal networks it is also possible to define firm-optimal
networks. Let Êc ⊆ E be a set of employees which is mostly preferred by player oc
and define hfo by hfo(c) = Êc ∪ {oc} for all c ∈ M . Then, none of the owners has
an incentive for deviating and, thus, the network is stable in Slavery.

Proposition 10. Assume the workers’ preferences are strongly separable and the
owners’preferences are separable. Moreover, suppose the firm-optimal network hfo

is uniquely determined. Then, hfo ∈ ST HF if and only if ST SL = ST HF.
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Proof. Because Slavery is symmetric to Protection against Dismissal, the proof pro-
ceeds analogously to the one of Proposition 9, just by reversing the role of owners
and employees.

Proposition 10 has two implications. First, it shows that the owners can enforce
the network which is most beneficial for them if they have a high level of authority.
Second, this network would be the first network which is rejected by the employees.
In fact, this result extends and reinforces the interpretation of Proposition 9 in a
straightforward way: Each side of the market would be worse off if the other side
obtains more property rights. If, for example, labor unions narrow the owners’level
of authority, the employees would benefit from this and vice versa. Recall that this
insight is independent of further working conditions (like wages), which we do not
consider explicitly in our model. In particular, this implies that Roth’s “polarization
of interests”seems to achieve great generality.

5 Conclusion

Even though there is an immense and rich body of literature on the stability of
networks (or group structures, respectively), in most of these studies, the stability
concepts the authors use are relatively rigid since they do not consider explicitly
the rules governing network formation. Indeed, the most distinctive feature of our
framework is the formal introduction of constitutions which enable us modeling
these rules in a very flexible way. Using this approach we find that enhancing the
blocking power of the players does not necessarily lead to more stability. Moreover,
we show that the society induces a constitutionally stable network if and only if there
is a certain degree of consent between the players about which feasible deviations
(according to the constitutions) are beneficial and which are not. In this context,
we also discuss conditions under which this criterion is satisfied. By applying our
model to job markets with labor unions we find a variation of Roth’s “polarization
of interests”: The workers generically suffer if the degree of authority of the owners
is raised and vice versa. In addition to this, we also show that the markets always
become stable if the property rights of one side of the market become suffi ciently
strong.
Although the model we analyze in this paper expands well-established branches

like Network Theory or Matching Theory, for example, it is still subject to certain
limitations which narrow the field of possible applications. For instance, assuming
myopic behavior is reasonable for a start, but it is well-justified only in complex set-
tings where it is extremely diffi cult to anticipate all possible deviations. Therefore,
it might be worth analyzing which results could be obtained if players act farsight-
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edly. Another natural extension is to examine situations where it is possible to add
new players or connections to the society. To incorporate this kind of dynamics, it
would be necessary to relax the assumption of fixed sets of players and connections.
Furthermore, under certain requirements, common rankings relate to ordinal poten-
tials. Since there are numerous publications on potential functions (e.g., Hart and
Mas-Colell, 1989; Monderer and Shapley, 1996; Page and Wooders, 2010; Qin, 1996;
Slikker, 2001), it seems interesting to study whether the corresponding results also
extend to the model introduced here.
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A Appendix: Proofs

Proof of Proposition 3(i)

In order to show that existence of D implies the non-existence of cycles, we will
consider the counterposition of this statement. Therefore, assume there is a cycle
H ⊆ H. Since there exists a path from each network in H to every other network
in H, if D is a common ranking, we must have h̄ D h̆ as well as h̆ D h̄ for all
h̄, h̆ ∈ H. Thus, there is no unique D-maximal element in H.
For the other direction suppose there exists no cycle. The following algorithm

proceeds in a similar way as the one in the proof of Theorem 1 in Jackson and Watts
(2001). We start with the binary relation D1 where h B1 h̄ if and only if there exists
an improving path from h̄ to h. Because there is no cycle, D1 is strict. Moreover,
for all h ∈ H, c ∈ M , and D ∈ Dch, deviating from h to h ± (c,D) always implies
h ± (c,D) B1 h by construction. However, D1 is not necessarily complete. Let
h̃, h̆ ∈ H with neither h̃ B1 h̆ nor h̆ B1 h̃. We construct D̄1 by adding h̃ B̄1 h̆ to
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D1, i.e., h D̄1 h̄ if and only if h D1 h̄ or h = h̃ and h̄ = h̆. Moreover, let D2 be the
transitive closure of D̄1. We will show that D2 still represents the preference profile
of the players, i.e., deviating from h to h ± (c,D) always implies h ± (c,D) B2 h

for all c ∈ M and D ∈ Dch. Suppose this is not true, that is, suppose there exist
h′ ∈ H, c ∈ M , D ∈ Dch′ , and S ∈ Sch′ with h′i h′ for all i ∈ (D \ h′(c)) ∪ S but
h′ D2 h ± (c,D). Thus, there exists a sequence of networks (h0, h1, . . . , hk) with
h0 = h′, hk = h′ ± (c,D) and h0 D̄1 h1 D̄1 . . . D̄1 hk. Assume the sequence is of
minimal length. This implies that hl = hl′ only if l = l′ for all l, l′ ∈ {0, 1, . . . , k}.
Suppose there exists an l ∈ {1, . . . , k} with {hl−1, hl} = {h̆, h̃}. Because hl′ 6= h̆, h̃

for all l′ /∈ {l − 1, l} this yields

hl D1 hl+1 D1 . . . D1 hk = h′ ± (c,D) D1 h′ = h0 D1 . . . D1 hl−1

and, thus, there exists an improving path from h̃ to h̆ or vice versa. This contradicts
the assumption that the two networks are not comparable underD1. Therefore, there
exists no l ∈ {1, . . . , k} with {hl−1, hl} = {h̆, h̃}. From this follows h0 D1 h1 D1

. . . D1 hk which contradicts the assumption that there is no cycle. Thus, D2 still
represents the preferences of the players and by construction it is also transitive and
strict. If it is not complete, the previous steps can be iterated. Because the set of
networks is finite, the iteration will stop after finitely many steps and we obtain a
common ranking D which is strict. In particular, strictness implies that for each
H ⊆ H there is a unique D-maximal network ĥ ∈ H.

Proof of Proposition 3(ii)

The first direction proceeds analogously to the first direction of Part (i). Let a
common ranking D and a set of networks H ⊆ H be given. If H forms a closed
cycle, we have I(h) = I(h′) = H and h D h′ as well as h′ D h for all h, h′ ∈ H. But
this would contradict that there is a unique D-maximal network in H and, thus,
there cannot exist a closed cycle.
For the other direction suppose there exist no closed cycles. The first step of the

construction of the common ranking proceeds in the same way as the one of Part (i).
That is, we start with D1 where hD1 h̄ if and only if there exists an improving path
from h̄ to h. But note that here this binary relation is not necessarily strict. Since by
assumption there are no closed cycles, there exists at least one constitutionally stable
network h′ ∈ H. If this network is uniquely determined, according to Lemma 1 it
is contained in every closed subset H ⊆ H and D1 can then obviously be extended
to a complete ranking where h′ is the unique maximal element. Therefore, in the
following, suppose there exists a further constitutionally stable network h′′ ∈ H.
In particular, this implies that neither h′ D1 h

′′ nor h′′ D1 h
′. Let h̃, h̆ ∈ H be an
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arbitrary pair of networks not comparable under D1. Analogously to above, D̄1 is
constructed by adding h̃ B̄1 h̆ to D1, i.e., h D̄1 h̄ if and only if h D1 h̄ or h = h̃

and h̄ = h̆. Again, let D2 be the transitive closure of D̄1. Note that by construction
h′ D2 h′′ would imply h′ 42 h′′ and vice versa. If D2 is not complete, because
of finiteness of H we can iterate the previous steps until a complete ranking D is
reached. We will show that h′ and h′′ are still not equivalent under D. This, in fact,
has the following implication: If ȟ is D—maximal in a closed subset H ⊆ H, it has
to be constitutionally stable by construction and w.l.o.g. we may assume ȟ = h′.
Then, for any other stable network h′′ ∈ H, we must have h′ B h′′ and, thus, h′ is
the unique D—maximal element in H.
In order to show h′ and h′′ are still not equivalent under D, let Dk be the binary

relation constructed in the k-th step of the algorithm described in the previous
passage. For k = 1, 2 we already know that h′ Dk h′′ would imply h′ 4k h′′

and vice versa. We will show inductively that this is also satisfied for all other k.
Therefore, let k ≥ 3 and suppose that h′ and h′′ are still not equivalent under Dk−1.
Moreover, assume this is not satisfied under Dk, i.e., we have h′ Dk h′′ as well as
h′′ Dk h′. This assumption will lead to a contradiction. Let h̃(k−1), h̆(k−1) ∈ H be
the corresponding pair of networks not comparable under Dk−1 which is added in
the next step. We will distinguish three cases:

Case 1: h′ Bk−1 h′′.
Because we assume h′ and h′′ are not equivalent under Dk−1, this implies
that there exists a sequence of networks (h1, . . . , hl) with h1 = h′′, hl = h′,
and h1 D̄k−1 . . . D̄k−1 hl. Moreover, from this also follows that there exists
1 ≤ l′ ≤ l − 1 with {hl′ , hl′+1} = {h̃(k−1), h̆(k−1)}. But then

hl′+1 Dk−1 . . . Dk−1 h′ Bk−1 h′′ Dk−1 . . . Bk−1 hl′ ,

which contradicts that h̃(k−1) and h̆(k−1) are not comparable under Bk−1.

Case 2: h′′ Bk−1 h′.
This case proceeds analogously to the previous one by just reversing the roles
of h′ and h′′.

Case 3: h′ and h′′ are not comparable under Dk−1.
If h′ and h′′ are equivalent under Dk but not under Dk−1, there must be
two sequences of networks (h1, . . . , hl) and (h̄1, . . . , h̄l̄) with h1 = h̄l̄ = h′,
hl = h̄1 = h′′, and

h1 D̄k−1 . . . D̄k−1 hl = h̄1 D̄k−1 . . . D̄k−1 h̄l̄.
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Moreover, there exist 1 ≤ l′ ≤ l − 1 and 1 ≤ l̄′ ≤ l̄ − 1 with {hl′ , hl′+1} =

{h̄l̄′ , h̄l̄′+1} = {h̃(k−1), h̆(k−1)}. In particular, this yields

hl′ D̄k−1 hl′+1 Dk−1 . . . Dk−1 h′′ Dk−1 . . . Dk−1 h̄l̄′ D̄k−1 h̄l̄′+1

which could only be satisfied if h̃(k−1) and h̆(k−1) are comparable under Dk−1.

Proof of Proposition 4

Let (h0, . . . , hk) with h0, . . . , hk ∈ H be an improving path. Moreover, suppose
h0 = hk, that is, suppose {h0, . . . , hk} forms a cycle. By construction of improving
paths there exists c0 ∈M and D0 ∈ Dc0h0 with h1 = h0 ± (c0, D0).

Case 1: D0 * h0(c0), i.e., there exists i0 ∈ D0 \ h0(c0).
Thus, h1 �i0 h0. Because all players are self-concerned this implies

h1 �i0 h0 ∼i0 h0 ± (c0, D0 \ {i0}) = h1 − (c0, {i0}).

In other words, after joining the connection player i0 has no incentive to leave
it unilaterally. By equability this is true for all other i ∈ h1(c0). Moreover, let
D ∈ Dc0h1 with D ∩ h1(c0) 6= ∅ and let i ∈ D ∩ h1(c0). Then:

h1 �i h1 − (c0, {i}) ∼i (h1 − (c0, {i}))± (c0, D \ {i0}) = h1 ± (c0, D).

Because the constitutions satisfy protection against eviction by assumption, no
player can be forced to leave a connection against her will. Thus, all players
in h1(c0) ∩ D would block the deviation from h1 to h1 ± (c0, D). We will
show next that the same is also true in h2. To this end, let c1 ∈ M and
D1 ∈ Dc1h1 with h2 = h1 ± (c1, D1). If c1 = c0, the previous discussion implies
D1 ∩ h1(c0) = ∅ and, by similar arguments as before, it can be shown that
h2 �i h2 ± (c0, D) for all i ∈ h2(c0) and D ∈ Dc0h2 with i ∈ D. However,
if c1 6= c0, then h2(c0) = h1(c0). Thus, by equability h2 �i h2 ± (c0, D) for
all i ∈ h2(c0) and D ∈ Dc0h2 with i ∈ D. Iterating these arguments implies
hl �i hl − (c0, D) for all 1 ≤ l ≤ k, i ∈ hl(c0) and D ∈ Dc0hl with i ∈ D. In
particular, if h0 = hk, then h0 = hk �i0 hk − (c0, D0) = h1 and, thus, i0 would
have blocked deviating to the network h1.

Case 2: D0 ⊆ h0(c0), i.e., h1 = h0 − (c0, D0).
Thus, h1(c0) ( h0(c0) and, moreover, h0−(c0, D0) �i0 h0 by protection against
eviction. Let i0 ∈ D0. Because h0 = hk, there must be 1 ≤ k′ ≤ k − 1 and
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D ∈ Dc0hk′ with hk′+1 = hk′ ± (c0, D) and i0 ∈ D. In particular, hk′+1 �i0 hk′ .
Similar to Case 1, exploiting that all players are self-concerned yields

hk′+1 �i0 hk′ ∼i0 hk′ ± (c0, D \ {i0}) = hk′ − (c0, {i0}).

Therefore, equability implies hk′+1 �i hk′+1 − (c0, {i}) for all i ∈ hk′+1(c0).
Now, by advancing analog arguments as in Case 1 it is possible to show that
this also yields hl �i hl− (c0, D) for all k′+ 1 ≤ l ≤ k, i ∈ hl(c0) and D ∈ Dc0hl
with i ∈ D. In particular, this is also true for h0 = hk. But this contradicts
again h0 − (c0, D0) = h1 �i0 h0.

Proof of Proposition 5

Let (h0, h1, . . . , hk) be an improving path in H. We will show by induction that
there is always at least one player i ∈ N with Mhk(i) 6= Mh0(i) and hk �i h0. Thus,
hk 6= h0.

k = 1: According to the definition of an improving path and because all constitu-
tions satisfy protection against eviction, at least one of the deviating players
strictly benefits from moving to h1. Thus, there remains nothing to show.

k > 1: Suppose the statement is true for k − 1. Note that Mhk−1(i) 6= Mh0(i) and
hk−1 �i h0 implies Mhk−1(i) �̂

i
Mh0(i). Let ck−1 ∈ M be the connection

and Dk−1 ∈ Dck−1hk−1
be the subset of players with hk = hk−1 ± (ck−1, Dk−1).

First consider the case i ∈ Dk−1. By assumption every player j ∈ Dk−1

strictly benefits from the deviation. Because preferences are lexicographic, this
implies not only hk �i h0 but also Mhk(i) 6= Mh0(i). Now suppose i /∈ Dk−1.
Then, of course, Mhk(i) = Mhk−1(i) 6= Mh0(i). But it might be possible
that i suffers from this deviation, i.e., hk−1 �i hk. Nevertheless, because
Mhk(i) = Mhk−1(i) �̂

i
Mh0(i) the player still strictly prefers hk to h0.

Some of the following proofs use similar technical arguments and the following
lemma will serve as a convenient and useful tool. Recall that for each h ∈ H,
Ach(C) = {D ∈ Dch | ∃S ∈ Sch(D) such that h± (c,D) �i h ∀i ∈ (D \ h(c)) ∪ S} is
the set of all feasible deviations causing an instability in c ∈ M . We say that h
is exit-proof if D ∈ Ach(C) implies D * h(c) for all c ∈ M . Phrased differently, a
network h is not exit-proof if and only if there exists a connection c ∈ M and a
group of members D ⊆ h(c) which causes an instability.

Lemma 2. Let (N,M,�, C) be a society. Moreover, let h ∈ H be an arbitrary
network. Then there exists an exit-proof network h̄ ∈ I(h).
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Proof. Let c ∈M such that there existsD ∈ Ach withD ⊆ h(c). If such a connection
does not exist, the network is exit-proof already and there remains nothing to show.
Consider h′ := h − (c,D). If h′(c) is not exit-proof, further subsets of players can
be deleted from c until the connection is either empty or no coalition is supporting
these deviations any more. This proceeding can be repeated for all connections and
because N and M are finite, after finitely many steps an exit-proof network h̄ will
be reached.

Note that by applying the previous result, Lemma 1 could be restated as follows:
There exists no closed cycle if and only if, for each exit-proof network h̄ ∈ H that
is not constitutionally stable, there exists an improving path leading from h̄ to a
constitutionally stable network.

Proof of Proposition 6

The main idea of the proof is to construct for every network in H an improving path
leading from this network to a stable network. By closedness, this stable network is
in H, too. Hence, there cannot be a closed cycle in H.
For constructing these paths, let us define, for each network h ∈ H, the set

M̄h = {c ∈M | ∃ j ∈ h(c) : h �j h− (c, {j})}.

That is, a connection c ∈ M is contained in M̄h if and only if at least one of its
members does not want to leave c. In particular, if c ∈ M̄h, due to equability, none
of the members wants to leave c.
Let h1 ∈ H be an arbitrary network. By applying Lemma 2 we may assume that

h1 is exit-proof. In the following, we will establish that if h1 is not constitutionally
stable (if this would be the case, there would remain nothing to be shown), there
exists an improving path from h1 to another exit-proof network h2 such that either
M̄h1 ( M̄h2 or M̄h1 = M̄h2 and h1 ( h2. Then, if h2 is not constitutionally stable,
it is possible to iterate the previous step again and again. In particular, each time
the step is iterated, either there are more connections whose members do not want
to leave or the network strictly grows. Since both, the set of connections and the
set of players, are supposed to be finite, this procedure will end after finitely many
steps.

Case 1: There exists c ∈M \ M̄h1 with Ach1 6= ∅.
Note that because h1 is exit-proof, D ∈ Ach1 if and only if D * h1(c), i.e.,
there is at least one player i1 ∈ D \ h1(c) who joins the connection. Let
h′1 := h1 ± (c,D). Because all players are self-concerned, this implies:

h1 ∼i1 h1 ± (c,D \ {i1}) = h′1 − (c, {i1}).
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In other words, after joining the connection, player i1 has no incentive to
leave it unilaterally. By equability this is also true for all i ∈ h′1(c) and,
thus, c ∈ M̄h′1

. Now let c′ ∈ M̄h1 . Note that c 6= c′ and h1(c′) = h′1(c′).
Therefore, equability implies that c′ ∈ M̄h′1

, too. Moreover, assume there
exists D′ ∈ Ac′h′1 with D

′ ⊆ h′1(c′), that is, assume that c′ is not exit-proof

any more. Let S ′ ∈ Sc′h′1(D
′) be the corresponding supporting coalition. From

regularity, it follows that there is a player j ∈ S ′ with h1 �j h1 − (c′, D′)

but h′1 − (c′, D′) �j h′1. If j /∈ D′, this would contradict separability because
h1(c′) = h′1(c′). If j ∈ D′, this would violate equability and self-concern.
Therefore, the assumption cannot be true or, in other words, transforming c
does not affect the exit-proofness of c′. Similar considerations also apply if
c′ ∈ M \ M̄h1 with c

′ 6= c. However, it might be possible that c itself is not
exit-proof any more. In this case, we can delete (analogously to Lemma 2) all
groups of players from the connection under the conditions that (i) no player
joins c and (ii) all deviations comply with the constitutions, i.e., they are
feasible and supported by a supporting coalition. Let h2 be the network which
is finally reached by means of this procedure. In particular, by advancing the
same arguments as before it can be shown that the other connections are still
exit-proof in h2 and, moreover, M̄h1 = M̄h2 \ {c} * M̄h2 .

Case 2: Ach1 = ∅ for all c ∈M \ M̄h1 .
Because h1 is not constitutionally stable, there exists c1 ∈ M̄h1 with Ac1h1 6= ∅.
Let D ∈ Ac1h1 be of minimal size, i.e., D̃ /∈ Ac1h1 for all D̃ ( D. Moreover,
let S ∈ Sc1h1(D) be the corresponding coalition which supports the deviation
of D. We will show first that D ∩ h1(c1) = ∅, that is, there are only players
in D who join the connection c. Assume this is not true, i.e., there exists
i ∈ D ∩ h1(c1). Then, h1 �i h1 − (c1, {i}) ∼i h1 ± (c1, D) by self—concern
and the definition of M̄h1 . Thus, i would not support the deviation of D.
Expressed differently, S ∩ D = ∅. Because all constitutions are supposed
to be decomposable and regular, we also have {i} ∈ Dc1h1 and S ∈ S

c1
h1

({i}).
By construction of h1 the network is exit-proof and, therefore, there exists
a player j ∈ S with h1 �j h1 − (c1, {i}). In particular, due to uniformity
this is true for all members of S. But exploiting separability then yields
h1 ± (c1, D \ {i}) �j h1 ± (c1, D) �j h1 for all j ∈ S which contradicts the
minimality of D.
Define h2 := h1 + (c1, D). Because all i ∈ D agreed to joining c1, h2 �i
h1 ∼i h2 − (c1, {i}) by self-concern. Therefore, from equability it follows that
no player in h2(c1) wants to leave the connection unilaterally. Moreover, if
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D̄ ∈ Dc1h2 with D̄ ∩ h2(c1) 6= ∅, then

h2 �i h2 − (c1, {i}) ∼i h2 ± (c1, D̄) (4)

for all i ∈ D̄ ∩ h2(c1), again by self-concern. In other words, all players who
would have to leave the connection would suffer from this deviation.
In the remainder of the proof we will show that h2 is indeed exit-proof. Let
c′ ∈M be an arbitrary connection and D′ ∈ Dc′h2 with D

′ ⊆ h2(c′). Recall that
Dc′h2 = Dc′h1 by regularity and, thus, D

′ ∈ Dc′h1 , too.

First consider the case c1 6= c′. Since the agents’preferences are separable,
h2 �j h2 − (c′, D′) if and only if h1 �j h1 − (c′, D′) for all j ∈ h2(c′) \ D′.
Therefore, if j ∈ h2(c′) \ D′ does not support the deviation of D′ in h1, the
same holds for h2, too. However, this is also true for all j ∈ D′ due to equability
and self-concern. Hence, it follows that a coalition supports a deviation in h2

if and only if it does the same in h1 (cf. Case 1). In particular, this implies
that the connection c′ is also exit-proof in h2.

Next consider c′ = c1. Here we have to distinguish two cases, S = ∅ and
S 6= ∅. First consider S = ∅, that is, when deviating from h1 to h2, the agents
in D do not need the consent of other members for entering c. Assume there
exists D′ ∈ Ac1h2 with D

′ ⊆ h2(c1). Let S ′ ∈ Sc1h2(D
′) be a coalition which

supports the deviation of D′, i.e., there is no j ∈ S ′ with h2 �j h2 − (c1, D
′).

From Equation (4) follows D′ ∩ S ′ = ∅. Moreover, regularity implies that
there exists ∅ 6= S ′′ ∈ Sc1h1(D

′) with S ′′ ⊆ S ′. Note that h2 − (c1, D
′) =

(h1 + (c1, D))− (c1, D
′) = h1 ± (c1, D ±D′). In particular, D′ ⊆ h1(c1) if and

only if D∩D′ 6= ∅. However, this is not possible because this would contradict
separability of the players’preferences. Therefore, D ∩ D′ 6= ∅. But this is
not possible, too: by decomposability and regularity also D∩D′ ∈ Dc1h2 ⊆ D

c1
h1

and S ′ ∈ Sc1h2(D ∩ D
′). Because ∅ ∈ Sc1h1(D ∩ D

′), again decomposability and
regularity implies D ∩D′ ⊆ S ′ which contradicts Equation (4). Next consider
S 6= ∅. We will show that |D| = 1. Let i ∈ D. If there would be no player j ∈ S
with h1 + (c, {i}) �i h1, decomposability together with separability would
imply h1+(c,D\{i}) �j h1+(c,D) = h2 �j h1 for all j ∈ S. In other words, S
would also support a deviation of D\{i}. Moreover, from uniformity it follows
h1 + (c,D \ {i}) �j h1 + (c,D) = h2 �j h1 for all j ∈ h1(c) ∪ (D \ {i}). Thus,
the players in D \ {i} would agree to joining c without player i which would
contradict minimality of D. Therefore, given that each i ∈ D is supported by
at least one player in S, from uniformity it follows that this is also true for
all other members of h1(c1). That is, h1 + (c1, {i}) �j h1 for all j ∈ h1(c1)

and, thus, h1 + (c1, {i}) �j h1 �j h1 − (c1, {j}) ∼j (h1 + (c1, {i})) − (c1, {j})

30



because c1 ∈ M̄h1 . By equability this also holds for player i or, phrased
differently, i has an incentive for joining c1 unilaterally. In fact, this implies
D = {i} by minimality of D. Moreover, by uniformity, all players in h1(c1)

strictly benefit from deviating from h1 to h2. Now let D′, S ′, and S ′′ be
given as in the case S = ∅. Then, as before we have D′ ∩ D 6= ∅ and, thus,
i ∈ D′. By decomposability also (h1(c1) ∩ (D ±D′)) = h1(c1) ∩D′ ∈ Dc1h1 and
S ′′ ∈ Sc1h1(h1(c1)∩D′). Since we have D̄ ∈ Ac1h1 only if D̄ * h1(c1), there exists
j ∈ S ′′ with h1 �j h1 − (c1, h1(c1) ∩D′). But this implies:

h1− (c1, h1(c1)∩D′) = h2− (c1, D
′) �j h2 �j h1 �j h1− (c1, h1(c1)∩D′)

which obviously is a contradiction. Thus, the assumption D′ ⊆ h2(c1), D′ ∈
Ac1h1 must be false and c1 is also exit-proof in h2.

Proof of Proposition 7

The proof proceeds in a similar way as the one of Proposition 6. As above we will
construct for every exit-proof network h1 ∈ H an improving path leading to a stable
network.

Step 1: In this step we establish that if h1 is not constitutionally stable, there
exists an improving path to another exit-proof network h2 such that there is
D1 ⊆ N with h2 �i h1 and Mh1(i) 6= Mh2(i) for all i ∈ D1. Note that this
implies h1 6= h2. Therefore, suppose h1 is not constitutionally stable. Then
there exists c1 ∈ M with Ac1h1 6= ∅. Let D1 ∈ Ac1h1 be of minimal size, i.e.,
D̃ /∈ Ac1h1 for all D̃ ( D1. Moreover, let S ∈ Sc1h1(D1) be the corresponding
coalition which supports the deviation of D1. We will show first that |D1| = 1.
Note that D1 * h1(c1) because h1 is exit-proof by assumption. Moreover, for
all i ∈ D1 there is at least one j ∈ S with h1 +(c1, {i}) �j h1. If this would not
be satisfied, analogously to Case 2 in the proof of Proposition 6 we would have
D1 \ {i} ∈ Ac1h1 since the constitutions are decomposable and the preferences
are separable and lexicographic. But this would contradict minimality of D1.
Therefore, given that each i ∈ D1 is supported by at least one player in S,
from uniformity it follows that this also holds for all other members of h1(c1)

and, thus, D1 = {i} by minimality of D1. Moreover, by applying uniformity,
all members in h1(c1) are strictly better off if i enters the connection. Next
we show that c1 is also exit-proof in h̄ := h1 + (c1, {i}). Assume this is not
true, that is, assume there exists D′ ∈ Ac1

h̄
with D′ ⊆ h̄(c1). Analogously to

Case 2 in the proof of Proposition 6 we must have i ∈ D′ because the players’s
preferences are lexicographic and separable. Let S ′ ∈ Sc1

h̄
(D′) be a coalition
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which supports the deviation of D′. Moreover, let S ′′ ∈ Sc1h1(D
′) with S ′′ ⊆ S ′

be defined as in Case 2 in the proof of Proposition 6. Then, by advancing
analog arguments as above we get

h1 − (c1, h1(c1) ∩D′) = h̄− (c1, D
′) �j h̄ �j h1 �j h1 − (c1, h1(c1) ∩D′)

which obviously is a contradiction. Thus, the assumptionD′ ⊆ h̄(c1),D′ ∈ Ac1h1
must be false and c1 is also exit-proof in h̄.
Now, suppose there exists c′ 6= c1 with D̄ ∈ Ac

′

h̄
for some D̄ ⊆ h̄(c′) = h1(c′).

Let S̄ ∈ Sc′
h̄

(D̄) be the corresponding supporting coalition. Note that D̄∩S̄ 6= ∅
because of separability. Let i ∈ D̄ \ S̄. By decomposability and regularity
also {i} ∈ Dc′

h̄
= Dc′h1 and S̄ ∈ S

c′

h̄
({i}). Since h1 is exit-proof, there exists

j ∈ S̄ with h1 �j h1 − (c′, {i}) and, thus, also h̄ �j h̄ − (c′, {i}). Therefore,
because the players’preferences satisfy uniformity, h̄ �j̄ h̄ − (c′, {i}) for all
j̄ ∈ h̄(c′) \ {i}. By exploiting separability this yields

h̄− (c′, D̄ \ {i}) �j̄
(
h̄− (c′, D̄ \ {i})

)
− (c′, {i}) = h̄− (c′, D̄) �j̄ h̄

for all j̄ ∈ S̄. Iterating this argument implies D̄∩S̄ ∈ Ac′
h̄
, too, and D̄\S̄ /∈ Ac′

h̄
.

Therefore, all players in D̄∩ S̄ ∈ Ac′
h̄
strictly benefit from this deviation. Note

that it might be the case that there exists j ∈ h̄(c′) ∩ D who is worse off
after this change of the connection. However, because the preferences are
lexicographic, this player still strictly prefers h̄− (c, D̄∩ S̄) to h1. By iterating
these arguments all subsets of members where all players agree to deviate
can be deleted from all connections. Let h2 be the network which is finally
reached by means of this procedure. In particular, because of separability
and uniformity, h2 is exit-proof, too. Moreover, since no player has to leave a
connection against her will and preferences are lexicographic, all players who
deviated strictly prefer h2 to h1.

Step 2: In this step we show that if h2 is not stable, there exists

(i) a sequence of non-empty subsets D1, D2, . . . , Dk−1, and

(ii) a sequence of exit-proof networks h1, h2, h3, . . . , hk such that there is an
improving path from hl−1 to hl for all 2 ≤ l ≤ k and the following two
conditions are satisfied:

(a) hl �i hl′ for all 2 ≤ l ≤ k, 1 ≤ l′ ≤ l − 1, and i ∈ Dl−1;

(b) if hl �i hl−1, then Mhl(i) = Mhl−1(i).

In particular, (a) implies hk 6= hl′ for all 1 ≤ l′ < k. Therefore, since there are
only finitely many exit-proof networks, this sequence will stop after finitely
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many steps and, thus, the last one has to be stable.
We will show the existence of the sequence by means of induction. For k = 2

see Step 1. Consequently, let k ≥ 3 and assume there exist h3, . . . , hk and
D2, . . . , Dk−1 as defined above. Moreover, suppose hk is not stable. Since this
network is exit-proof by assumption, there exists ck ∈ M with Ackhk 6= ∅ and
D * hk(ck) for all D ∈ Ackhk . Let Dk ∈ Ackhk be of minimal size and construct
hk+1 analogously to h2 in Step 1. Similar to above, players deviate only if
they have a strict incentive and hk+1 �i hk for all i ∈ Dk. First, this implies
Mhk(i) = Mhk+1(i) for all i ∈ N with hk+1 �i hk. Second, if i ∈ Dk∩Dk−i, then
clearly hk+1 �i hl′ for all 1 ≤ l′ ≤ k because of transitivity. Therefore, let i ∈
Dk+1\Dk. IfMhk(i) = Mhl′ (i) for all 1 ≤ l′ ≤ k, we have hk+1 �i hl′ for each of
these networks because i’s preferences are lexicographic. On the other hand, if
Mhk(i) 6= Mh1(i), let l1 := min

{
2 ≤ l ≤ k |Mhl−1(i) 6= Mhl(i)

}
. Note that (ii)

implies hl1 �i hl1−1. Thus, from this also follows hl1 �i hl′ for all 1 ≤ l′ ≤ l1−1

by lexicography. Next consider l2 := min
{
l1 + 1 ≤ l ≤ k |Mhl−1(i) 6= Mhl(i)

}
.

By advancing analog arguments as before we get hl2 �i hl′ for all 1 ≤ l′ ≤ l2−1

and, thus, iterating the procedure yields hk+1 �i hl′ for all 1 ≤ l′ ≤ k.

Proof of Proposition 8

This proof proceeds similarly as the proofs of the two previous propositions. Again,
we construct for every network which is in H = {h ∈ H | O ∩ h(c) = {oc} ∀ c ∈M}
an improving path leading from this network to a stable network. Because H is
closed, this stable network has to be inH, too. Therefore, let h1 ∈ H be an arbitrary
network. Because of Lemma 2 we may assume that h1 is exit-proof. Moreover, let
c1 ∈ M be an arbitrary connection with Ac1h1 6= ∅. The construction of the path
proceeds in three steps.

Step 1: We establish that there exists B1 ∈ Ac1h1 with A
c1
h1+(c1,B1) = ∅.

The main idea of this step is to exploit separability of the owner’s preferences.
Let

B1 :=
{
i ∈ E \ h1(c1)

∣∣ h1 + (c1, {i}) �i h1 and h1 + (c1, {i}) �oc1 h1

}
.

That is, B1 contains exactly those players who want to join c1 and would be
accepted by oc1 . Let i, j ∈ B1. Then, h1 +(c1, {i, j}) �oc1 h1 +(c1, {i}) �oc1 h1

by separability of oc1’s preferences. Iterating this argument implies h1 +

(c1, B1) �oc1 h1. Moreover, since the workers’preferences are lexicographic,
also h1 + (c1, B1) �i h1 for all i ∈ B1. Thus, B1 ∈ Ac1h1 . Now suppose there
exists D ∈ Ac1h1+(c1,B1). If D ⊆ h1(c1) ∪ B1, the definition of B1 and exit-
proofness of h1 imply h1 + (c1, B1) �oc1 (h1 + (c1, B1)) − (c1, i) for all i ∈
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h1(c1)∪B1. Advancing the same arguments as before yields h1 + (c1, B1) �oc1
(h1 + (c1, B1))− (c1, D), which implies that oc1 would not support the devia-
tion. Moreover, the workers in h1(c1) ∪B1 obviously do not want to leave the
firm and thus, D ⊆ h1(c1) ∪ B1 cannot be true. However, if D * h1(c1) ∪ B1

and there exists i ∈ D\h1(c1) with (h1 + (c1, B1))+(c1, {i}) �oc1 h1 +(c1, B1),
then by construction of B1 and because i’s preferences are lexicographic, this
worker would not agree to join c1. Therefore, Ac1h1+(c1,B1) must be empty.

Step 2: We construct an improving path leading from h′1 := h1+(c1, B1) to another
exit-proof network h2 with h2 �i h1 for all i ∈ B1 and h2 �i h1 for all i ∈ E\B1.
Let c′ ∈ M such that there exists B′ ⊆ h′1(c′) with B′ ∈ Ac′h′1 and choose B

′

maximal with respect to “⊆”, i.e., there exists no B̄ ⊆ h′1(c′) with B̄ ∈ Ac′h′1
and B′ ( B̄. Note that c′ 6= c1 because Ac1h′1 = ∅. By assumption oc′’s
preferences are separable and, thus, h′1 �oc′ h′1 − (c′, B′) by exit-proofness of
h1. Therefore, h′1 − (c′, B′) �j h′1 for all j ∈ B′. Now suppose there exists
i ∈ B′\B1. This implies i ∈ h1(c) if and only if i ∈ h′1(c) for all c ∈M . If i has
a strict incentive for leaving c′ in h′1, she would also have a strict incentive for
leaving the connection in h1 because her preferences are lexicographic. But this
contradicts exit-proofness of h1 and, thus, B′ ⊆ B1. Moreover, by construction
of B′ and separability of oc′’s preferences, there exists no further set of workers
B′′ ⊆ h′1(c′) \B′ with B′′ ∈ Ac′h′1−(c′,B′). By iterating the previous procedure, it
is possible to reach an exit-proof network h2 by deleting all workers from all
connections they want to leave without impairing the other workers in E \B1.
In particular, for all i ∈ E \ B1 nothing changes and, therefore, they are
indifferent between h2 and h1. However, all i ∈ B1 strictly benefit from the
deviations and thus, they strictly prefer h2 to h1.

Step 3: Iterating the procedure.
Once at h2, if Ach2 = ∅ for all c ∈M , there remains nothing to show. Therefore,
assume there exists c2 ∈ M with Ac2h2 6= ∅. By repeating Steps 1 and 2 it
is possible to find B2 ⊆ E \ h2(c2) with Ac2h2+(c2,B2) = ∅ and to construct
an improving path leading from h2 + (c2, B2) to an exit-proof network h3.
Analogously, h2 will be Pareto dominated by h3 from the workers’perspective.
Because H is finite, there exists only a finite number of exit-proof networks.
Hence, this procedure will end after finitely many steps.
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