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Abstract

We study matching with couples problems where hospitals have one vacant position. We

introduce a property of couples’ preferences over pairs of hospitals called only-swap complemen-

tarity. Our first result is that the domain of preferences satisfying only-swap complementarity

is the only maximal domain for the existence of a stable matching that contains a natural class

of preferences called simple preferences. We prove this result by showing that only-swap com-

plementarity is equivalent to weak substitutability (Hatfield and Kojima, 2008) and bilateral

substitutability (Hatfield and Kojima, 2010). We also extend Klaus and Klijn’s (2007) paths

to stability result by showing that if couples’ preferences satisfy only-swap complementarity,

then from any arbitrary matching there exists a finite path of matchings where each matching

on the path is obtained by “satisfying” a blocking coalition for the previous one and the final

matching is stable.
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1 Introduction

A matching with couples problem is a mathematical representation of a labor market with

two salient features: (i) wages are fixed, and hence they cannot be used to equate labor

supply and demand, and (ii) married couples participate in the market. An example of

such labor market is the entry-level labor market for medical doctors in the U.S. which is

administered by the National Resident Matching Program (NRMP).

Since the 1950s, the NRMP has used a variant of the Gale and Shapley (1962) algorithm

to match doctors and hospitals. It was by 1970, that the increasing presence of married

couples in the market led to a significant reduction of voluntary participation in the NRMP.

This problem was tackled by allowing couples to express their preferences over pairs of

hospitals.1 The difficulties the NRMP experienced prior to its redesign suggest market

outcomes were not “stable” in a way we describe next.

A blocking coalition consist of a group of doctors and hospitals that are not matched

to each other but in fact would prefer to be. A matching is stable if there is no blocking

coalition. In the presence of blocking coalitions the permanence of the matching is at

serious risk as there are agents who have the incentive and the power to circumvent it.

Gale and Shapley (1962) demonstrate that in matching problems with no couples there

is always a stable matching. Unfortunately, in the presence of couples the existence of a

stable matching is no longer guaranteed (Roth, 1984).

The success of matching markets with couples such as the NRMP suggests that, despite

the theoretical impossibility, stable matchings exist and are reached in real life applications.

In couples problems with a “small” number of agents, the existence of a stable match-

ing can be guaranteed only under certain properties of couples preferences. Some such

properties are: weak responsiveness (Klaus and Klijn, 2005 and Klaus et al., 2009), sub-

stitutability (Hatfield and Milgrom, 2005) and bilateral substitutability (Hatfield and Ko-

jima, 2010).2 By contrast, in couples problems where the number of agents is large the

existence of a stable matching is guarantee as long as the proportion of couples is small

1See Roth and Peranson (1999) and Roth (2002) for details on the new design of the algorithm.
2Bilateral substitutability is weaker than both substitutability and weak responsiveness (Hatfield and Kojima, 2010).
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relative to the number of hospitals (Kojima et al. 2013 and Ashlagi et al. 2014).3,4

We introduce a property of couples’ preferences over pairs of hospitals called only-

swap complementarity. Our property rules out most complementarities, but not all. We

illustrate this point with the following example.

Suppose there is a couple formed by doctors Ana (A) and Ben (B). Each doctor

receives several job offers from hospitals located in different cities. Consider two situations.

Situation 1: A receives an offer from the hospital in Tijuana (Tij), and neither A nor B

receive offers from the hospital in San Diego (SD). Situation 2: In addition to the offers

A and B received in Situation 1, B receives an offer from the hospital in San Diego.5

We say there is a complementarity between Tij and SD, if A rejects the offer from

Tij in Situation 1 and accepts it in Situation 2. Let h be the hospital chosen by B in

Situation 1. If h 6= Tij and couples’ preferences satisfy only-swap complementarity, then

A still rejects the offer from Tij in Situation 2. In this case there is no complementarity

between Tij and SD. However, if h = Tij, then it can be that in Situation 2, A takes the

job at Tij and B takes the job at SD. The swap of jobs between B and A motivates the

name of our property.

Our first result is that the domain of preferences satisfying only-swap complementarity

is the only maximal domain for the existence of a stable matching that includes a very

narrow and natural preference domain: the domain of simple preferences. Another way to

state our result is that, (i) if all couples’ preferences satisfy only-swap complementarity,

then there is a stable matching. And (ii) if one couple’s preferences does not satisfy only-

swap complementarity, then there are preferences for all hospitals, and simple preferences

for one other couple such that regardless of the preferences of the other couples, no stable

matching exists.6

3Kojima et al. (2013) and Ashlagi et al. (2014) consider random couples problems. They show that as the number of

agents grows large the probability that a stable matching exists approaches one. For their results they require the growth

rate of the number of couples to be small relative to the growth rate of the number of hospitals. In particular, Kojima et al.

(2013) require that the growth rate of the number of couples is bounded by O(na), and Ashlagi et al. (2014) require the

growth rate of the number of couples to be n1−ε, where n is the number of hospitals, 0 ≤ a ≤ 1
2

and ε > 0.
4For an interdisciplinary and comprehensive review of the literature on couples problems see Biro and Klijn (2013).
5The job in Tijuana is not very desirable (location, work loads, reputation), whereas the job in San Diego is very desirable.

Furthermore, Tijuana and San Diego are close to each other.
6For couples problems the domain of weakly responsive preferences is a maximal domain provided that couples’ preferences

satisfy an unemployment aversion property (see Klaus and Klijn (2005) and Klaus et al. (2009)). For the many-to-many

matching with contracts problem, substitutability is a maximal domain (Hatfield and Kominers, 2012). The difference

between the latter result and ours is that Hatfield and Kominers (2012) assume substitutability for all agents whereas we

assume only-swap complementarity for couples. Since in the couples problem only-swap complementarity is strictly weaker
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We show this result by proving that only-swap complementarity, bilateral substitutabil-

ity and weak substitutability (Hatfield and Kojima, 2008) are equivalent in couples prob-

lems. This equivalence is important in its own as it makes clearer the relation between

matching with couples and matching with contracts problems, where weak substitutability

and bilateral substitutability were originally formulated.

Our second result is that for problems where all couples’ preferences satisfy only-swap

complementarity, we can reach a stable matching from any arbitrary matching by satisfying

blocking coalitions one by one.7 An implication of this result is that, starting from an

arbitrary matching, certain random processes that match blocking coalitions, one at the

time, converge to a stable matching with probability one.8

The importance of this result is that it provides theoretical support to the empirical

observation that many decentralized matching markets perform well, suggesting they are

able to reach stable outcomes (Kojima and Ünver, 2006).

Although we do not not explicitly consider single doctors, this is with no loss of gener-

ality as they can be easily incorporated in our framework and all our results would remain

valid.

The remainder of the paper is organized as follows. In Section 2 we describe the

matching with couples problem and introduce the only-swap complementarity property.

In Section 3 we state the maximal domain and the paths to stability results. We conclude

in Section 4. All proofs and the equivalence result are in the Appendices.

2 Matching with couples

There are two finite sets H and C of hospitals and couples. We denote generic elements

of H and C by h and c = (d1, d2), where d1 and d2 denote the spouses in couple c. Let

D := {d : d ∈ {d1, d2} for some (d1, d2) ∈ C} be the set of doctors. Each hospital has

exactly one position to fill. Let u be the outside option for doctors. We can think of u

than substitutability their result does not imply ours. Obviously, our result does not imply theirs since the problem they

consider is more general.
7Satisfying a blocking coalition: a couple or a hospital ends its partnership with unacceptable partners, or a couple and

two hospitals match with each other, possibly in replacement of less preferred partners.
8This result is established for one-to-one matching problems by Roth and Vande Vate (1990). It is extended to many-

to-many matching problems in which agents on one side have substitutable preferences and agents on the other side have

responsive preferences by Kojima and Ünver (2006). For matching with couples problems, the paths to stability result holds

whenever couples’ preferences satisfy weak responsiveness (Klaus and Klijn, 2007).
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as a hospital with no capacity constraint, so that each doctor can always find a job there.9

Each hospital h ∈ H has a complete, transitive, and strict preference relation Ph

over the set D, and the prospect of having its position unfilled denoted by ∅. For d, d′ ∈
D ∪ {∅}, we write dPh d

′ if hospital h prefers d to d′ (d 6= d′), and dRh d
′ if h finds d

at least as good as d′, i.e., dPh d
′ or d = d′. If d ∈ D is such that dPh ∅, then d is an

acceptable doctor for hospital h. By contrast, if ∅Ph d, d is an unacceptable doctor for

hospital h.

We represent hospitals’ preferences by ordered lists of doctors and ∅; for example,

Ph = d5, d3, ∅ . . . indicates that hospital h prefers d5 to d3, and considers all other doctors

to be unacceptable. Let PH = {Ph }h∈H .

The restriction that each hospital has exactly one vacant position implies that no couple

can get a job for each of its members in the same hospital. In other words, no pair (h, h)

with h ∈ H is feasible. The set of all feasible hospital pairs is given by

H̄ = [(H ∪ {u})× (H ∪ {u})] \ {(h, h) : h ∈ H}.

We denote a generic element of H̄ by (h, h′).

Each couple c = (d1, d2) ∈ C has a complete, transitive, and strict preference relation

Pc over H̄. For each (h1, h2), (h3, h4) ∈ H̄ we write (h1, h2)Pc (h3, h4) if c prefers d1 and d2

being matched to h1 and h2 respectively, to being matched to h3 and h4 respectively. We

write (h1, h2)Rc (h3, h4) if c finds (h1, h2) at least as good as (h3, h4), i.e., (h1, h2)Pc (h3, h4)

or (h1, h2) = (h3, h4). Any pair (h, h′) such that (h, h′)Rc (u, u) is an acceptable pair to

c and otherwise unacceptable.

We represent couples’ preferences by means of ordered lists of feasible hospital pairs;

for example, Pc = (h3, h4), (h5, h3), (u, h4), . . . , (u, u) . . . indicates that c prefers (h3, h4) to

(h5, h3) and so on. Let PC = {Pc}c∈C .

A one-to-one matching with couples problem or simply a problem is denoted by

(PH, PC).

For each c we define a choice function Chc as

Chc(H) := argmax
Pc

{
H ∪ {(u, u)}

}
, for each H ⊆ H̄.

The choice function is defined on the set of feasible hospital pairs. Given a feasible set

of hospital pairs, it selects the most preferred pair from the set and the outside option
9We refer to elements of H ∪ {u} as hospitals. When we refer only to elements in H we make it explicit by writing

“hospitals in H”.
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(u, u). It is important to note that the choice function is not a primitive of our problem.

Let α be a property of a couple’s preference relation. The set of all preferences satisfying

α is called the domain of preferences satisfying α and is denoted by Pα.

A matching specifies which hospitals are matched to which doctors. Formally, a

matching µ is a function defined on D ∪H such that

• for each d ∈ D, µ(d) ∈ H ∪ {u},

• for each h ∈ H, µ(h) ∈ D ∪ {∅},

• for each d ∈ D and h ∈ H, µ(d) = h if and only if µ(h) = d.

For each c = (d1, d2) ∈ C, we write µ(c) to denote the pair (µ(d1), µ(d2)).

Now we introduce a central property of the matching literature: stability. Our stability

concept is the same as the one in Klaus and Klijn (2005).

Let µ be a matching. A coalition [h] with h ∈ H is a blocking hospital for µ if

• ∅Ph µ(h).

Let c = (d1, d2) ∈ C. A coalition [c, (u, u)], [c, (µ(d1), u)] or [c, (u, µ(d2))] is a

blocking couple for µ if

•
(
u, u
)
Pc
(
µ(d1), µ(d2)

)
,
(
µ(d1), u

)
Pc
(
µ(d1), µ(d2)

)
or
(
u, µ(d2)

)
Pc
(
µ(d1), µ(d2)

)
,

respectively.

We often refer to blocking hospitals or to blocking couples as blocking coalitions.

A coalition [c, (h, h′)] with (h, h′) ∈ H̄ is a blocking coalition for µ if (h, h′) /∈
{(u, u),

(
µ(d1), u)

)
,
(
u, µ(d2)

)
} and

•
(
h, h′

)
Pc
(
µ(d1), µ(d2)

)
;

• [h ∈ H implies d1Rh µ(h)] and [h′ ∈ H implies d2Rh′ µ(h′)].

A matching is stable if there are no blocking coalitions. Since our analysis focuses on

stability, whenever we specify a problem (PH , PC) it is enough to specify lists of acceptable

doctors and lists of acceptable (and feasible) hospital pairs.

A set of hospital pairs is complete if (i) it contains the pair (u, u), and (ii) if combining

the first and second components of any two pairs within the set results in a feasible hospital

pair, then the latter pair also belongs to the set. Formally:
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A subset H ⊆ H̄ is complete if (i) (u, u) ∈ H and (ii)
[
(h1, h2), (h3, h4) ∈ H and h1 6= h4

]
imply (h1, h4) ∈ H.

We define only-swap complementarity, which is a property of couples’ preferences Pc

over hospital pairs.

Only-swap complementarity, Pc: for each complete H ⊆ H̄ and each h1, h2, h3, h4 such

that h1, h2 /∈ {u, h3, h4}, (h3, h4) ∈ H, and Chc(H) = (h1, h2), we have[
(osc1) (h1, h4)Pc (h3, h4) or (osc2) (h1, u)Pc (h3, h4)

]
and [

(osc3) (h3, h2)Pc (h3, h4) or (osc4) (u, h2)Pc (h3, h4)
]
.

Let Posc be the domain of preferences satisfying only-swap complementarity.

We explain only-swap complementarity by means of an example. Suppose married doc-

tors Ana and Ben receive several offers from hospitals located in different cities. Suppose

that they take the offer from the hospital in Tijuana (h1) for Ana and the offer from the

hospital in San Diego (h2) for Ben.10 Let h3 6= h1, h2 be a hospital that made an offer to

Ana. Further, suppose that the offer from the hospital in San Diego is no longer avail-

able to Ben. In this case Ana rejecting the offer from Tijuana and taking the offer from

h3 while Ben taking an offer from a hospital h4 6= h1 would be a violation of only-swap

complementarity. However, Ana taking the offer from h3 and Ben the offer from Tijuana

(h4 = h1) is not a violation of only-swap complementarity. Complementarities that involve

this kind of job swaps between couple’s spouses are allowed by our property.

Now we introduce a natural preference domain: the domain of simple preferences.

Simple preferences capture the situation in which a couple needs a job for only one of

its members. In fact this is the way we incorporate single agents to our analysis i.e., by

consider single agents as couples with simple preferences.

Simple preferences, Pc: (i) (h, h′) ∈ H̄ and h′ ∈ H =⇒ (u, u)Pc (h, h′), and (ii) there is

a linear order � on H ∪ {u} such that h � h′ =⇒ (h, u)Pc (h′, u).

Let Psim ⊂ Posc be the set of all simple preferences.

10Recall that the job in Tijuana is not very desirable (location, work loads, reputation), whereas the job in San Diego is

very desirable. Moreover, Tijuana and San Diego are close to each other.
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3 Results

Our first result is a maximal domain result. A preference domain Pα is a maximal

domain for the existence of a stable matching if the following holds:

• Sufficiency. If all couples’ preferences are in Pα, then a stable matching exists.

• Necessity. Suppose there is at least two couples c and c′. If c’s preferences are not in

Pα, then there are preferences for hospitals and preferences for couple c′ in Pα such

that regardless of the preferences of the other couples, no stable matching exists.

Theorem 1. For problems with at least two couples, Posc is the only maximal domain for

the existence of a stable matching that contains Psim.

Theorem 1 follows from Theorems A, B and Lemma 1 in Appendix A.

Hatfield and Kojima (2010) note that the couples problem can be obtained as a special

case of the (matching with) contracts problem of Hatfield and Milgrom (2005) by making

contracts to be such that, for each couple c = (d, d′) and each hospital h, there are two

possible contracts between c and h: one that prescribes “d to match h” and another that

prescribes “d′ to match h”. Each couple can sign at most two contracts (one for each

member), and each hospital can sign at most one contract.11 Moreover the concept of

stable allocation of contracts coincides with our concept of stable matching.

We prove Theorem 1 by showing that only-swap complementarity is equivalent to one

necessary and one sufficient condition for the existence of stable allocations in matching

with contracts. It is possible to give a direct proof of Theorem 1. However, the equivalence

between these conditions is interesting in its own as it makes more transparent the relation

between couples and contracts problems.

3.1 Paths to stability

We extend Klaus and Klijn’s (2007) path to stability result to the case where couples’

preferences satisfy only-swap complementarity. We show that if all couples’ preferences

satisfy only-swap complementarity, there is always a path from an arbitrary matching

to a stable one, such that each matching on the path is obtained by satisfying a blocking

11Note that a couple in the couples problem plays the role of a hospital in the contracts problem, and a hospital in the

couples problem plays the role of a doctor in the contracts problem.

8



coalition for the previous matching. We first define precisely what we mean by “satisfying”

a blocking coalition.

Satisfying blocking coalitions:12 If [h], h ∈ H is a blocking hospital for a matching µ,

then we say that a new matching ν is obtained from µ by satisfying the blocking coalition

if h and µ(h) are unmatched, and all other agents are matched to the same mates at ν as

they are at µ. Formally, matching ν is obtained from matching µ by satisfying blocking

coalition [h] for µ if

• ν(h) = ∅ and ν(µ(h)) = u;

• ν(d) = µ(d) for each d ∈ D \ {µ(h)};

• ν(h̄) = µ(h̄) for each h̄ ∈ H \ {h}.

Similarly, if [c = (d1, d2), (h′, h′′)] is a blocking couple or a blocking coalition for a

matching µ, then we say that a new matching ν is obtained from µ by satisfying the

blocking coalition if (d1, d2) and (h, h′) are matched to one another at ν, their mates at

µ (if any, and if not involved in the blocking coalition) are unmatched at ν, and all other

agents are matched to the same mates at ν as they were at µ. Formally, matching ν is

obtained from matching µ by satisfying blocking coalition [(d1, d2), (h′, h′′)] (for µ) if

•
[
µ(d1) = h ∈ H \ {h′, h′′} implies ν(h) = ∅

]
and

[
µ(d2) = h ∈ H \ {h′, h′′} implies

ν(h) = ∅
]

;

•
[
µ(h′) = d ∈ D \ {d1, d2} implies ν(d) = u

]
and

[
µ(h′′) = d ∈ D \ {d1, d2} implies

ν(d) = u
]
;

• ν(d1) = h′, ν(d2) = h′′,
[
h′ ∈ H implies ν(h′) = d1

]
, and

[
h′′ ∈ H implies ν(h′′) = d2

]
;

• ν(d) = µ(d) for each d ∈ D \ {µ(h′), µ(h′′), d1, d2};

• ν(h) = µ(h) for each h ∈ H \ {µ(d1), µ(d2), h′, h′′}. ♦

Now we are ready to state our paths to stability result.

12We borrow the definition of satisfying blocking coalitions from Klaus and Klijn (2007, page 159).
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Theorem 2 (Paths to stability). Let (PH , PC) be a problem such that for each c ∈ C,

Pc ∈ Posc. Let µ be an arbitrary matching for (PH , PC). Then, there is a finite sequence

of matchings µ1, . . . , µk such that µ1 = µ, µk is stable, and for each i = 1, . . . , k− 1, there

is a blocking coalition for µi such that µi+1 is obtained from µi by satisfying this blocking

coalition.

The proof of Theorem 2 is relegated to Appendix B.

As a Corollary to Theorem 2 we obtain the following result. Consider a random process

that begins by selecting an arbitrary matching µ and generates the sequence of matchings

µ = µ1, µ2, . . . where each µi+1 is obtained from µi by satisfying a blocking coalition,

chosen at random from the blocking coalitions for µi. Assume that the probability that

any particular blocking coalition for µi is chosen to generate µi+1 is positive, and only

depends on the matching µi (but not on the number i). Let Ψ(µ) be the random sequence

generated in this way from an initial matching µ.

Corollary 1 (Random paths to stability). Let (PH , PC) be a problem such that for each

c ∈ C, Pc ∈ Posc. For any initial matching µ for (PH , PC), the random sequence Ψ(µ)

converges with probability one to a stable matching.

To prove Theorem 2, we adapt the deterministic path algorithm to stability from Klaus

and Klijn’s (2007) DPC-Algorithm.13 Our algorithm yields, in a finite number of steps, a

stable matching for any problem in which couples’ preferences satisfy only-swap comple-

mentarity.

In the description of our algorithm we use the aid of a virtual room that agents enter

and exit throughout the algorithm. This visual devise was first introduced by Ma (1996)

and is also used in Klaus and Klijn (2007).

3.2 Paths to Stability Algorithm (PS-algorithm)

Let µ be an arbitrary matching for a problem (PH , PC) where for each c ∈ C, Pc ∈ Posc.14

After satisfying blocking hospitals for µ (first stage) we start putting couples one by one

in an initially empty room (second stage). Each couple enters the room with its mates

under µ. Whenever a couple enters the room with its mates, blocking coalitions within the

13The DPC-Algorithm of Klaus and Klijn (2007) is in turn a modification of the Roth and Vande Vate (1990) algorithm

for one-to-one matching problems with no couples.
14This subsection follows closely Klaus and Klijn (2007, pages 161-163).
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room are satisfied and the hospitals that are “dumped” are put outside the room. Thus,

after this second stage we obtain a matching where all couples are matched to hospitals

in the room, and for which there are no blocking coalitions within the room.15 In the

third stage, we let hospitals outside the room enter one by one. In each step possibly one

blocking coalition within the room has to be satisfied before turning to the next step. The

blocking coalitions that are satisfied in this stage are “hospital optimal” in the sense that

for the hospital involved there is no other blocking coalition available within the room

that would give it a better doctor. We call the doctor that is in all hospital optimal

blocking coalitions associated with the entering hospital the best doctor. There may be

several blocking coalitions that match the entering hospital with the best doctor. In order

to assure the convergence of the algorithm we have to choose the blocking carefully. First,

we prove (see the Claim in the third stage of the PS-algorithm and its proof in Appendix

B) that one of the following is a blocking coalition: (a) the couple (to which the best

doctor belongs), the hospital and the match of the best doctor’s partner, (b) the couple,

the hospital and the best doctor’s match, or (c) the couple and the hospital. From these

possible blocking coalitions we satisfy the blocking coalition that the couple prefers most.

In the process of satisfying the blocking coalition at most two hospitals may exit the room.

We show that after a finite number of steps all hospitals have joined the couples in the

room. Starting from µ we have obtained a stable matching for the problem (PH , PC). We

now formalize the PS-algorithm.

A formal description of the PS-algorithm

Input: A problem (PH , PC) such that for each c ∈ C, Pc ∈ Posc, and a matching µ for

(PH , PC).

Initialization: Set A := ∅. We call A the room.

• First Stage

– Satisfy all blocking hospitals and blocking couples and denote the resulting match-

ing by µ. After Stage 1 we obtain a matching µ1 := µ with no blocking

hospitals/couples.

• Second Stage
15Up to stages 1 and 2 the PS-algorithm is exactly the same as the DPC-Algorithm of Klaus and Klijn (2007, pages 161-

163). It is in the third stage where an adaptation is needed to deal with preferences that satisfy only-swap complementarity

but do not satisfy weak responsiveness.
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– If there is c = (d1, d2) ∈ C \A, then let the couple and the hospitals in H assigned

to it enter the room, i.e., set A := (A ∪ {c, µ(d1), µ(d2)}) \ {u}.

– As long as there is a blocking coalition [c′ = (d′1, d
′
2), (h′1, h

′
2)] with {c′, h′1, h′2} ⊆

A ∪ {u} do:

Begin Loop: Satisfy [c′, (h′1, h
′
2)], and let dumped hospitals exit the room:

∗ For i = 1, 2, [if µ(d′i) = h ∈ H \ {h′1, h′2}], then define µ(h) := ∅ and set

A := A \ {h};
∗ For i = 1, 2, if h′i ∈ H and µ(h′i) = d ∈ D \ {d′1, d′2}, then µ(d) := u;

∗ For i = 1, 2, define µ(d′i) := h′i, and if h′i ∈ H, then µ(h′i) := d′i.

End Loop

After Stage 2 we obtain a matching µ2 := µ where all couples are in the

room and there is no blocking coalitions.

• Third Stage

– As long as there is h′ ∈ H \ A do:

Begin Loop: Set A := A ∪ {h′}.
If there is no blocking coalition [c′, (h′1, h

′
2)] with h′ ∈ {h′1, h′2} ⊆ A ∪ {u}, then

GO BACK to the beginning of the Third Stage. If there are blocking coalitions

[c′, (h′1, h
′
2)] with h′ ∈ {h′1, h′2} ⊆ A∪{u}, then let d′1 be h′’s most preferred doctor

among the ones it could be matched to at these blocking coalitions. Let d′2 be

the partner of d′1. Without loss of generality, c′ = (d′1, d
′
2) ∈ C.

Let h∗1 = µ(d′1), h∗2 = µ(d′2).

Claim: [c′, (h′, h∗2)], [c′, (h′, h∗1)] or [c′, (h′, u)] is a blocking coalition for µ.

For each couple c ∈ C and each matching ν, let

B(c, ν) :=
{

(hi, hj) ∈ H̄ : [c, (hi, hj)] is a blocking coalition for ν
}
.16

Define

(h′, ĥ) = Chc′
{
{(h′, h∗2), (h′, h∗1), (h′, u)} ∩ B(c′, µ)

}
.

The intersection above is non-empty by the Claim. Satisfy blocking coalition

[c′, (h′, ĥ)], and if some hospitals are dumped (at most two), let them exit the
16This is the set of all hospital pairs that together with c form a blocking coalition for matching ν.
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room. Formally,

define µ(c′) := (h′, ĥ) and,

∗ Case (a) If ĥ = h∗2 and h∗1 ∈ H, then define µ(h∗1) = ∅ and set A := A\{h∗1}.
∗ Case (b) If ĥ = h∗1 and h∗2 ∈ H, then define µ(h∗2) = ∅ and set A := A\{h∗2}.
∗ Case (c) If ĥ = u, then for each h∗ ∈ {h∗1, h∗2} ∩H, define µ(h∗) = ∅ and set

A := A \ {h∗1, h∗2}.

End Loop

After Stage 3 we obtain a matching µ3 := µ where all couples and all hospitals

are in the room and no blocking coalitions exist in the room.

Output: A stable matching µ for (PH , PC).

Remark 1. One may wonder whether for any problem for which a stable matching exists,

there exists some algorithm that starts in an arbitrary matching and converges to a stable

one. The answer to this question is negative. This means that there are problems for which

the set of stable matching is non-empty and no path of matchings obtained by satisfying

blocking coalitions and starting from certain matching converges to a stable one. Example

4.1 of Klaus and Klijn (2007, page 167) exhibits a problem for which a stable matching

exists and, starting from a certain matching, any path obtained by satisfying blocking

coalitions cycles. As Klaus and Klijn (2007) point out: “this cycling has to do with

the underlying complementarities in the couples’ preferences, and not with the particular

choice of the path (algorithm).”

Remark 2. The path to stability result generalizes to problems with couples and single

doctors. We can incorporate single doctors by letting each single doctor have a ficti-

tious partner that finds all hospitals unacceptable. For example, if single student d has

preferences given by Pd = h1, h2, u, h4, . . . then replace d by couple c with preferences

Pc = (h1, u), (h2, u), (u, u), (h4, u) . . .The path convergence result generalizes because the

preferences of a fictitious couple induced by the preferences of a single doctor satisfy only-

swap complementarity.

Example 1 (An application of the PS-algorithm). Let (PH , PC) be the problem in Table

1. The sets of hospitals and couples are given by H = {h1, h2, h3, h4, h5, h6, h7, h8} and

C = {(d1, d2), (d3, d4), (d5, d6), (d7, d8), (d9,d10)}. All couples’ preferences satisfy only-swap
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complementarity. In Table 2 we apply the PS-algorithm to the initial matching µ(C) =

(u, h4), (h5, u), (h8, h3), (h2, h1), (h6, h7). On the left hand side we give short explanatory

comments that guide through the algorithm (we abbreviate the term blocking coalition

by b.c.). On the right hand side we depict the matching at each point of the algorithm

(whenever a hospital stands below a doctor it is matched to this doctor). In order to save

space we abbreviate each couple (di, dj) as didj and each hospital pair (hi, hj) as hihj. The

vertical bar represents the door of the room: the agents on the left are inside the room

and the agents on the right are outside the room. We obtain a path of matchings, each

of them being the result of satisfying a blocking coalition for the previous matching. The

output is the stable matching µ̂(C) = (h3, u), (u, h1), (h6, u), (h5, h2), (h7, u).

We use Example 1 to explain two differences between the DPC-algorithm and the

PS-algorithm. As can be seen in Table 2 the two algorithms coincide until step 11. In

step 11 hospital h3 enters the room and [(d1, d2), (h3, u)] is a blocking coalition. However,

neither [(d1, d2), (h3, h4)] nor [(d1, d2), (h3, h1)] are blocking coalitions. In this situation the

DPC-algorithm is not defined. By contrast, the PS-algorithm satisfies blocking coalition

[(d1, d2), (h3, u)]. In addition, note that at step 11 two hospitals are dumped.

Table 1: A problem where couples’ preferences satisfy only-swap complementarity

PC PH

Pd1d2 Pd3d4 Pd5d6 Pd7d8 Pd9d10 Ph1 Ph2 Ph3 Ph4 Ph5 Ph6 Ph7 Ph8

h3u uh1 h6u h5h2 h6h7 d1 d3 d1 d2 d6 d5 d1 d5

uh2 h2h1 uh5 h5u h7h6 d4 d1 d2 d1 d8 d9 d5

h1h4 h2u h8u uh2 h6u d3 d2 d3 d3 d7 d9

h1u h5u h2u h7u d2 d7 d4 d8 d1

uh4 uh7 d5 d8 d6 d5 d2

uh6 d6 d3

Table 2: The PS-algorithm applied to (PC , PH)

Initial matching |d1d2 d3d4 d5d6 d7d8 d9d10

|uh4 h5u h8h3 h2h1 h6h7

(1) Stage 1

Continued on next page
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Table 2 – Continued from previous page

Satisfy one-sided blocking coalitions |d1d2 d3d4 d5d6 d7d8 d9d10 h1, h3, h7

|uh4 h5u h8u h2u h6u

(2) Stage 2

choose couple (d1d2) to enter room d1d2 |d3d4 d5d6 d7d8 d9d10 h1, h3, h7

the room is stable uh4 |h5u h8u h2u h6u

(3) Stage 2

choose couple (d3d4) to enter room d1d2 d3d4 |d5d6 d7d8 d9d10 h1, h3, h7

the room is stable uh4 h5u |h8u h2u h6u

(4) Stage 2

choose couple (d5d6) to enter room d1d2 d3d4 d5d6 |d7d8 d9d10 h1, h3, h7

the room is unstable uh4 h5u h8u |h2u h6u

(5) Stage 2

satisfy b.c. [(d5d6), (uh5)] d1d2 d3d4 d5d6 |d7d8 d9d10 h1, h3, h7, h8

the room becomes stable uh4 uu uh5 |h2u h6u

(6) Stage 2

choose couple (d7d8) to enter room d1d2 d3d4 d5d6 d7d8 |d9d10 h1, h3, h7, h8

the room is unstable uh4 uu uh5 h2u |h6u

(7) Stage 2

satisfy b.c. [(d3d4), (h2u)] d1d2 d3d4 d5d6 d7d8 |d9d10 h1, h3, h7, h8

the room becomes stable uh4 h2u uh5 uu |h6u

(8) Stage 2

choose couple (d9d10) to enter room d1d2 d3d4 d5d6 d7d8 d9d10 |h1, h3, h7, h8

the room is unstable uh4 h2u uh5 uu h6u

(9) Stage 2

satisfy b.c. [(d5d6), (h6u)] d1d2 d3d4 d5d6 d7d8 d9d10 |h1, h3, h5, h7, h8

the room becomes stable uh4 h2u h6u uu uu

(10) Stage 3 [h1 enters the room] d1d2 d3d4 d5d6 d7d8 d9d10 |h3, h5, h7, h8

satisfy b.c. [(d1d2), (h1h4)] h1h4 h2u h6u uu uu

the room becomes stable

Continued on next page
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Table 2 – Continued from previous page

(11) Stage 3 [h3 enters the room] d1d2 d3d4 d5d6 d7d8 d9d10 |h1, h4, h5, h7, h8

satisfy b.c. [(d1d2), (h3u)] h3u h2u h6u uu uu

(12) Stage 3 [h1 enters the room] d1d2 d3d4 d5d6 d7d8 d9d10 |h2, h4, h5, h7, h8

satisfy b.c. [(d3d4), (uh1)] h3u uh1 h6u uu uu

the room becomes stable

(13) Stage 3 [h2 enters the room] d1d2 d3d4 d5d6 d7d8 d9d10 |h4, h5, h7, h8

satisfy b.c. [(d7d8), (h2u)] h3u uh1 h6u h2u uu

the room becomes stable

(14) Stage 3 [h5 enters the room] d1d2 d3d4 d5d6 d7d8 d9d10 |h4, h7, h8

satisfy b.c. [(d7d8), (h5h2)] h3u uh1 h6u h5h2 uu

the room becomes stable

(15) Stage 3 [h7 enters the room] d1d2 d3d4 d5d6 d7d8 d9d10 |h4, h8

satisfy b.c. [(d9d10), (h7u)] h3u uh1 h6u h5h2 h7u

the room becomes stable

Stage 3 [h4 and h8 enter the room] d1d2 d3d4 d5d6 d7d8 d9d10

Final Output h3u uh1 h6u h5h2 h7u h4, h8

4 Conclusions

In this paper we study stability in matching with couples problems. Stability is important

because stable matchings are robust to rematching by coalitions of agents. In this sense

stable matchings are expected to last and are a good equilibrium prediction.

The presence of complementarities in couples’ preferences may prevent the existence of a

stable matching (Roth, 1984). As an example of complementarities in couples’ preferences

we can think of a couple of married doctors who wish to find jobs in the same city, and
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therefore the couple rejects or accepts a job for one of the spouses depending on whether

it is possible to get a job for the other spouse in the same city.

Despite the theoretical impossibility, real world centralized and decentralized matching

markets with couples seem to perform well, suggesting stable matchings are reached. We

shed some light on this issue by studying which complementarities are compatible with (i)

the existence of a stable matching, and (ii) the possibility of reaching a stable matching

by means of a decentralized matching process.

More precisely, we show that (i) the domain of preferences satisfying only-swap com-

plementarity is maximal for the existence of a stable matching, and (ii) if preferences

satisfy only-swap complementarity then from any arbitrary matching there is a finite path

of matchings such that each matching on the path is obtained by satisfying a blocking

coalition from the previous one and the final matching is stable.
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Appendix A

We define two properties of couples’ preferences: bilateral substitutability and weak sub-

stitutability. Bilateral substitutability is sufficient for the existence of a stable matching

in couples problems (Theorem A), while weak substitutability is necessary (Theorem B).

In order to define these properties we first set up a matching with contracts version of the

couples problem. Next, we show that bilateral substitutability and weak substitutability

are equivalent to only-swap complementarity (Lemma 1). This result is interesting in its

own as it helps to make more transparent the relation between matching with couples and

matching with contracts problems.

Contracts

A contract is an ordered pair (h, d) ∈ H×D. The ordered pair (u, d) is a null contract.

All the definitions in this section are made for couple c = (d1, d2) and therefore we drop all

subindices and function arguments involving it . The set of all possible contracts

with members of couple c is X̄ := (H∪{u})×{d1, d2}. We denote the set of null contracts

involving members of couple c by U :=
{

(u, d1), (u, d2)}.
The preference relation P over hospital pairs induces a preference relation P̃ over

sets of contracts. Formally, for each (h1, h2), (h3, h4) ∈ H̄ we have

(h1, h2)P (h3, h4) if and only if {(h1, d1), (h2, d2)} P̃ {(h3, d1), (h4, d2)}.

We define a choice function C̃h as:

C̃h(X) := max
P̃

{
{(h, d1), (h′, d2)} ⊆ X ∪ U : h, h′ ∈ H =⇒ h 6= h′

}
, for each X ⊆ X̄.

We also define a rejection function as:

R̃ej(X) = X \ (C̃h(X) ∪ U), for each X ⊆ X̄.

The rejection function gives for each X ⊆ X̄, the set of contracts with hospitals in H

that are rejected from X.

It can be easily verified that the choice function C̃h satisfies consistency (Alkan, 2002):

C̃h(X ′′) ⊆ (X ′ ∪ U) ⊆ (X ′′ ∪ U) implies C̃h(X ′) = C̃h(X ′′).

The relation between Ch and C̃h is stated in Claims 1 and 2 below, but first we need some

additional definitions.
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Let H ⊆ H̄, we denote

• the sets of first and second components of the pairs in H by

H1(H) := {h : (h, h′) ∈ H} and H2(H) := {h′ : (h, h′) ∈ H},

• the set of contracts available to c when hospital pairs in H are available by

X̄(H) :=
(
H1(H)× {d1}

)
∪
(
H2(H)× {d2}

)
.

Let X ⊆ X̄, we denote

• the set of hospitals that have a contract with doctor d ∈ {d1, d2} in X by

H(X, d) := {h ∈ H ∪ {u} : (h, d) ∈ X},

• the set of hospitals with contracts in X by

H(X) := H(X, d1) ∪H(X, d2),

• the set of hospital pairs available to c when contracts in X are available by

H̄(X) :=
{

(h, h′) ∈ H̄ : h ∈ H(X, d1) ∪ {u} and h′ ∈ H(X, d2) ∪ {u}
}
.

Claim 1. For each X ⊆ X̄, C̃h(X) = {(h, d1), (h′, d2)} =⇒ Ch(H̄(X)) = (h, h′).

Claim 1 follows from the definitions of Ch, C̃h, and H̄(·).

Claim 2. For each completeH ⊆ H̄, Ch(H) = (h, h′) =⇒ C̃h(X̄(H)) = {(h, d1), (h′, d2)}.

Claim 2 follows from the definition of a complete set of pairs, and the definitions of

Ch, C̃h and X̄(·).
Bilateral substitutability is a property of each couple’s choice function C̃h. For a couple,

it means that if a job offer from hospital h to one of its members is rejected when all other

available job offers come from different hospitals, the job offer is still rejected when a new

job offer from a different hospital is received.

Bilateral substitutability (Hatfield and Kojima, 2010): there do not exist a set of

contracts X ⊆ X̄ and contracts (h, d), (h′, d′) ∈ X̄ such that h, h′ ∈ H \H(X), (h, d) /∈
C̃h
(
X ∪ {(h, d)}

)
and (h, d) ∈ C̃h

(
X ∪ {(h, d), (h′, d′)}

)
.

Theorem A (Sufficiency. Hatfield and Kojima, 2010). Let (PH , PC) be a problem. If

all couples’ preferences satisfy bilateral substitutability, then there is a stable matching for

(PH , PC).
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Weak substitutability is a weakening of bilateral substitutability and it is not sufficient

for the existence of a stable allocation in the contracts problem. Here we present its

restriction to the couples problems. Intuitively, it means that the set of job offers rejected

by the couple from a set of job offers, where no hospital offers a job to both members of the

couple at the same time, expands when the couple receives new job offers from different

hospitals.

Weak substitutability (Hatfield and Kojima, 2008): for each X ′ ⊆ X ′′ ⊆ X̄ such that[
(h, d), (h′, d′) ∈ X ′′ and h = h′ ∈ H

]
imply [d = d′], we have R̃ej(X ′) ⊆ R̃ej(X ′′).

Theorem B (Necessity. Hatfield and Kojima, 2008). Suppose C contains at least two

couples c and c′. Further suppose that Pc does not satisfy weak substitutability. Then,

there exist Pc′ ∈ Psim and preferences for hospitals such that regardless of the preferences

of the other couples, no stable matching exists.

Lemma 1. Bilateral substitutability, weak substitutability and only-swap complementarity

are equivalent.

Proof:

Weak substitutability =⇒ bilateral substitutability

Suppose bilateral substitutability does not hold. Then, there is a set of contracts Y ⊆ X̄

and contracts (h, d), (h′, d′) ∈ X̄ such that h, h′ ∈ H \H(Y ), (*)
[
(h, d) /∈ C̃h(Y ∪{(h, d)})

and (h, d) ∈ C̃h(Y ∪ {(h, d), (h′, d′)})
]
.17

Let X ′ =
(
C̃h(Y ∪ {(h, d)})

)
∪ {(h, d)} and X ′′ = X ′ ∪

{
(h′, d′)

}
.

Step 1: (h, d) /∈ C̃h(X ′)

We have that C̃h(Y ∪ {(h, d)}) ⊆ X ′ ∪ U ⊆ (Y ∪ {(h, d)}) ∪ U. Hence, by consistency,

C̃h(X ′) = C̃h(Y ∪ {(h, d)}). Since (h, d) /∈ C̃h(Y ∪ {(h, d)}), we conclude (h, d) /∈ C̃h(X ′).

Step 2: C̃h(Y ∪ {(h, d), (h′, d′)}) = {(h, d), (h′, d′)}
By assumption (h, d) ∈ C̃h(Y ∪ {(h, d), (h′, d′)}). Assume that (h, d) = (h′, d′) or (h′, d′) /∈
C̃h(Y ∪ {(h, d), (h′, d′)}). Then, C̃h(Y ∪ {(h, d), (h′, d′)}) ⊆ (Y ∪ {(h, d)}) ∪ U . By con-

sistency C̃h(Y ∪ {(h, d), (h′, d′)}) = C̃h(Y ∪ {(h, d)}). But, this is a contradiction to

(*). So we have, (h, d) 6= (h′, d′) and (h′, d′) ∈ C̃h(Y ∪ {(h, d), (h′, d′)}), which implies

C̃h(Y ∪ {(h, d), (h′, d′)}) = {(h, d), (h′, d′)}.
17All statements are about couple c = (d1, d2). Moreover, d, d′ ∈ {d1, d2}.
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Step 3: (h, d) ∈ C̃h(X ′′).

It holds that

C̃h(Y ∪ {(h, d), (h′, d′)}) = {(h, d), (h′, d′)} ⊆ X ′′ ∪ U ⊆ (Y ∪ {(h, d), (h′, d′)}) ∪ U.

By consistency, C̃h(X ′′) = C̃h(Y ∪{(h, d), (h′, d′)}). Since (h, d) ∈ C̃h(Y ∪{(h, d), (h′, d′)}),
we have (h, d) ∈ C̃h(X ′′).

From steps 1 and 3 R̃ej(X ′) * R̃ej(X ′′).

Step 4: X ′′ does not involve two different contracts with the same hospital in

H .

This follows from (i) h, h′ ∈ H \H(Y ) and hence h, h′ /∈ C̃h(Y ∪ {(h, d)}) and (ii) C̃h

never chooses the same hospital for both d1 and d2.

From R̃ej(X ′) * R̃ej(X ′′) and Step 4 we conclude that weak substitutability does not

hold.

Bilateral substitutability =⇒ only-swap complementarity

Suppose only-swap complementarity does not hold. Then, there is a complete H ⊆
H̄ and h1, h2, h3, h4 such that h1, h2 /∈ {u, h3, h4}, (h3, h4) ∈ H, Ch(H) = (h1, h2),

(h3, h4)P (h1, h4) and (h3, h4)P (h1, u).18 19

Let X ′ := {(h3, d1), (h4, d2), (u, d1), (u, d2)} and X ′′ = X̄(H).

Step 1: (h1, d1) /∈ C̃h(X ′ ∪ {(h1, d1)}).

Clearly, (h1, d1), (h2, d2) /∈ X ′. Moreover, the only pairs in H̄(X ′ ∪ {(h1, d1)}) involving

h1 are (h1, h4) and (h1, u). By assumption (h3, h4) is preferred to both of them. Hence,

(h1, h4), (h1, u) 6= Ch(H̄(X ′ ∪ {(h1, d1)})). Therefore by Claim 1, (h1, d1) /∈ C̃h(X ′ ∪
{(h1, d1)}).

Step 2: (h1, d1) ∈ C̃h(X ′ ∪ {(h1, d1), (h2, d2)}).

Claim 2 and Ch(H) = (h1, h2) imply C̃h(X ′′) = {(h1, d1), (h2, d2)}. It also holds that

X ′ ⊆ X ′′ ∪ U . Therefore,

C̃h(X ′′) = {(h1, d1), (h2, d2)} ⊆ X ′ ∪ {(h1, d1), (h2, d2)} ⊆ X ′′ ∪ U.
18We are considering the case in which osc1 and osc2 fail. The case in which osc3 and osc4 fail is symmetric.
19Strict because h1 6= h3.
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Since C̃h satisfies consistency,

C̃h(X ′ ∪ {(h1, d1), (h2, d2)}) = {(h1, d1), (h2, d2)}.

Step 3: h1, h2 ∈ H \H(X ′).

This follows from the definition of X ′ and the assumption that h1, h2 /∈ {u, h3, h4}.

From Steps 1, 2 and 3, we conclude that bilateral substitutability does not hold.

Only-swap complementarity =⇒ weak substitutability.

Suppose weak substitutability does not hold. Then there are sets X ′ ⊆ X ′′ ⊆ X̄ such that

(i) R̃ej(X ′) * R̃ej(X ′′) and (ii) [(h, d), (h′, d′) ∈ X ′′ and h = h′ ∈ H imply d = d′].

From (i) there is (h, d) ∈ R̃ej(X ′) \ R̃ej(X ′′). Without loss of generality let d = d1.

Let h1 = h. Since (h, d) /∈ R̃ej(X ′′) we have, (iii) C̃h(X ′′) = {(h1, d1), (h2, d2)}, for some

h2 ∈ H ∪ {u}.
Let H′ = H̄(X ′) and H′′ = H̄(X ′′). By construction, H′′ is complete. Moreover, by

Claim 1 and (iii) we have

Ch(H′′) = (h1, h2) (?).

Let h3, h4 ∈ H ∪ {u} be such that:

Ch(H′) = (h3, h4) (??).

By construction, (h3, h4) ∈ H′′.

Step 1. h1 /∈ {u, h3}.

By (??) and Claim 2, (h3, d1) /∈ R̃ej(X ′). Moreover, (u, d1) /∈ R̃ej(X ′) because R̃ej(X ′) only

contains contracts with hospitals in H. Since (h1, d1) ∈ R̃ej(X ′), h1 /∈ {u, h3}.

Step 2. h2 /∈ {u, h4}.

By Step 1, (h1, h2) 6= (h3, h4). Suppose h2 ∈ {u, h4}. Then, as (h1, d1) ∈ X ′ we have

{(h1, d1), (h2, d2)} ⊆ X ′ ∪ U ⊆ X ′′ ∪ U.

By consistency, C̃h(X ′) = {(h1, d1), (h2, d2)}, but this and Claim 1 contradict ??.

Step 3. h1 6= h4 and h2 6= h3.

It follows from h1, h2 ∈ H, (h1, d1), (h2, d2), (h3, d1), (h4, d2) ∈ X ′′ and (ii).
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Step 4. ¬osc1 and ¬osc2 hold.

Since (h1, d1), (h3, d1), (h4, d2) ∈ X ′, we have (h1, h4), (h3, h4), (h1, u) ∈ H′. Hence, relation

?? and h1 6= h3 imply (h3, h4)P (h1, h4) and (h3, h4)P (h1, u).

From steps 1 to 4, we conclude that Pc does not satisfy only-swap complementarity for

H′′.

Appendix B. The PS-algorithm is well defined

We prove Theorem 1 by showing that the PS-algorithm is well defined for problems where

couples’ preferences satisfy only-swap complementarity, i.e., we prove that given any such

problem (PH , PC) and any matching µ for (PH , PC), the PS-algorithm produces a stable

matching for (PH , PC) in a finite number of steps.20

Proof. We consider the three stages of the PS-algorithm. The first stage clearly is well

defined and terminates in a finite number of steps. Also, the matching µ1 at the end of

the first stage does not have blocking hospitals.

The second stage also is well defined and terminates in a finite number of steps: there

are only a finite number of couples and hence we only go through the loop a finite number

of times. Moreover, the algorithm does not cycle in the loop since hospitals that are

dumped are put outside of the room. For the matching µ2 at the end of the second stage

it holds that

• there are no blocking hospitals because (i) matching µ1 does not have blocking hos-

pitals and (ii) in the second stage all blocking coalitions that may be created in the

room are removed by the loop.

• C ⊆ A since the second stage terminates when all couples are in the room.

• for each d ∈ D,µ2(d) ∈ A ∪ {u}, because (i) when a doctor is put in the room, the

hospital he/she is matched to at that moment is put in the room as well and (ii) in

the loop the hospitals that are not dumped remain in the room.

• there is no blocking coalition [c′, (h′1, h
′
2)] with {h′1, h′2} ⊆ A ∪ {u} since in the loop

these blocking coalitions are satisfied.

20The proofs in this Appendix follow closely those in Appendix A of Klaus and Klijn (2007).
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We now proceed to prove that the third stage is well-defined, terminates in a finite

number of steps, and that the output of the algorithm µ3 is a stable matching.

We first prove that the third stage terminates in a finite number of steps. To this end

we define a sequence which we prove to be strictly increasing in the number of loops of

stage 3 and bounded from above.

For each c ∈ C and each (h, h′) ∈ H̄ let

rc (h, h′) :=
∣∣{(h′′, h′′′) ∈ H̄ : (h′′, h′′′)Rc (h, h′)}|

be the position of (h, h′) in the preference list Pc. Denote by µk and nk the matching and

the number of hospitals in the room at the beginning of loop k, respectively.

Define the sequence f1, f2, . . . as:

fk :=
(
− 2

∑
c∈C

rc (µk(c))
)

+ nk, k = 1, 2, . . .

At each loop k of the third stage a hospital h′ enters the room. Consider two cases.

Case 1. If there is no blocking coalition [c′, (h′1, h
′
2)] with h′ ∈ {h′1, h′2}. Then,

the matching does not change, i.e., µk+1 = µk. Therefore, 2
∑

c∈C rc (µk+1(c)) =

2
∑

c∈C rc (µk(c)). At the same time the number of hospitals increases by one (since

h′ enters the room and no other hospital leaves it). Hence, nk+1 = nk + 1. Hence,

fk+1 = fk + 1.

Case 2. If there is a blocking coalition [c′, (h′1, h
′
2)] with h′ ∈ {h′1, h′2}. Then, from

the specific choice we make it follows that at the new matching µk+1 one couple is

strictly better off and no other couple changes mates. Hence, −2
∑

c∈C rc (µk+1(c)) ≥
−2
∑

c∈C rc (µk(c)) + 2. At the same time, hospital h′ entered the room and at most

two hospitals (which were previously matched to members of the couple in the block-

ing coalition that was satisfied) exit the room. Therefore, nk+1 ≥ nk − 1. Summing

up the two terms of fk+1 we conclude that fk+1 ≥ fk + 1.

Note that for all k = 1, 2, . . . the term −2
∑

c∈C rc (µk(c)) is bounded from above by

−2|C| and the term nk is bounded from above by |H|. So, the sequence f1, f2, . . . is

bounded from above by the number −2|C|+ |H|.
The fact that the sequence f1, f2, . . . is strictly increasing and bounded from above

implies that the third stage terminates in a finite number of steps.
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It remains to show that the third stage is indeed well defined and that the final matching

is stable. It suffices to show that the matching at the beginning of each loop satisfies the

following properties:

(i) There is no blocking hospital or blocking couple;

(ii) There is no blocking coalition [c′, (h′1, h
′
2)] with {h′1, h′2} ⊆ (A ∪ {u}) \ {h′};

(iii) The Claim holds (which is conditional upon the existence of a blocking coalition

[c′, (h′1, h
′
2)] with h′ ∈ {h′1, h′2} ⊆ A ∪ {u}).

Induction Basis: We prove that properties (i)-(iii) hold when the algorithm enters the

loop of the third stage for the first time.

(i) and (ii): It follows from the properties of µ2 that (i) and (ii) hold when the algorithm

enters the loop of the third stage for the first time.

(iii): We prove that (iii) holds when the algorithm enters the loop for the first time.

Assume that hospital h′ ∈ H \A enters the loop, thus A = A∪{h′}. Further, assume that

there is a blocking coalition
[
c′, (h′1, h

′
2)
]

with h′ ∈ {h′1, h′2} ⊆ A∪{u}. Let d′1 be h′’s most

preferred doctor among the ones it would get at these blocking coalitions. Let d′2 be the

partner of d′1. Without loss of generality we assume c′ = (d′1, d
′
2) ∈ C. Let h∗1 = µ(d′1) and

h∗2 = µ(d′2).

Suppose to the contrary that (iii) does not hold. Then
[
c′, (h′, h∗2)

]
,
[
c′, (h′, h∗1)

]
and[

c′, (h′, u)
]

are not blocking coalitions. Hence, there is a blocking coalition
[
c′, (h′, h′3)

]
with h′3 ∈ A \ {h∗1, h∗2}.
Consider the complete set of pairs H′′ depicted in the following table

(1) (h∗1, h
∗
2) (4) (h′, h∗2) (7) (u, h∗2)

(2) (h∗1, h
′
3) (5) (h′, h′3) (8) (u, h′3)

(3) (h∗1, u) (6) (h′, u) (9) (u, u)

First, we show that Chc′(H′′) = (h′, h′3). By (i), couple c′ (weakly) prefers pair (1) to

pairs (3), (7), and (9). By (ii), couple c′ (strictly) prefers pair (1) to pairs (2) and (8).

Since
[
c′, (h′, h∗2)

]
and

[
c′, (h′, u)

]
are not blocking coalitions, couple c′ (strictly) prefers

(1) to (4) and (6). Finally, since
[
c′, (h′, h′3)

]
is a blocking coalition, pair (5) is (strictly)

preferred to (1) and therefore, by transitivity, (5) is preferred to all other pairs. This

implies (a1) Chc′(H′′) = (h′, h′3).
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By definition of H′′, (a2) (h∗1, h
∗
2) ∈ H′′. Recall h′3 6= u, h∗1, h

∗
2, and note that since h′

just entered the room it must be that h′ 6= u, h∗1, h
∗
2. Hence, (a3)h′, h′3 /∈ {u, h∗1, h∗2}.

From a1, a2, a3 and only-swap complementarity of Pc follows21

(h′, h∗2)Pc′ (h
∗
1, h
∗
2) or (h′, u)Pc′ (h

∗
1, h
∗
2).

This contradicts the assumption that
[
c′, (h′, h∗2)

]
and

[
c′, (h′, u)

]
are not blocking coali-

tions. We conclude (iii) holds.

Induction Assumption: Suppose that (i)-(iii) hold for loops 1 up to k of the third stage.

Induction Step: Now consider loop k + 1 (where k ≥ 1) of the third stage.

Since no agent is forced to accept an unacceptable agent in loop k, (i) is true. Using

the arguments for (iii) of the first loop it is easy to check that (iii) is again true for loop

k + 1 if (ii) is also true for loop k + 1. So, it only remains to prove that (ii) holds for loop

k + 1. It is clear that (ii) holds for loop k + 1 if there is no blocking coalition
[
c′, (h′1, h

′
2)
]

with h′ ∈ {h′1, h′2} ⊆ A ∪ {u} for the matching at the end of loop k. We show that in fact

this is the case.

Let µk and µk+1 be the matchings at the beginning of loops k and k+ 1, respectively.22

Assume that in loop k blocking coalition [c′, (h′, ĥ)] with c′ = (d1, d2) and

(h′, ĥ) = Chc′
(
{(h′, µk(d′2)), (h′, µk(d

′
1)), (h′, u)} ∩ B(c′, µk)

)
is satisfied. In the process of satisfying this blocking coalition, hospitals µk(d

′
1) and µk(d

′
2)

may be dumped. Define h∗a, h
∗
b as follows,

h∗a =

{
µk(d

′
1) if µk(d

′
1) is dumped,

u otherwise;

h∗b =

{
µk(d

′
2) if µk(d

′
2) is dumped,

u otherwise,

then the agents in the room at the beginning of loop k + 1 are A \ {h∗a, h∗b}.
To prove (ii) for loop k + 1, we have to show that there is no blocking coalition

[
c̄, (h̄, h̃)

]
with {h̄, h̃} ⊆ (A \ {h∗a, h∗b}) ∪ {u} for µk+1. Suppose, by contradiction, there is such a

blocking coalition. Note that all agents remaining in the room [i.e., all agents in (A \
{h∗a, h∗b})] are (weakly) better off at µk+1 compared to µk. So,

[
c̄, (h̄, h̃)

]
also blocks µk.

21Note (h′, h′3, h
∗
1, h
∗
2) play the role of (h1, h2, h3, h4) in the definition of only-swap complementarity.

22Note that µk+1 is also the matching at the end of loop k.
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Hence, if h′ /∈ {h̄, h̃}, then we obtain a contradiction to induction assumption (i) or (ii)

for loop k. So, without loss of generality, (h̄, h̃) = (h′, h̃).

If c̄ 6= c′, then it follows immediately that in loop k hospital h′ did not choose its

optimal blocking mate; a contradiction. Similarly, if the blocking coalition in question

equals
[
c̄, (h̃, h′)

]
, then d′2 Ph′d

′
1 and hospital h′ did not choose its optimal blocking doctor;

a contradiction. Hence, the blocking coalition we consider is of the form
[
c′, (h′, h̃)

]
.

The table below depicts the complete set of pairs H′′.

(1) (µk(d′1), µk(d′2)) (4) (h′, µk(d′2)) (7) (u, µk(d′2))

(2) (µk(d′1), h̃) (5) (h′, h̃) (8) (u, h̃)

(3) (µk(d′1), u) (6) (h′, u) (9) (u, u)

Note that all pairs in H′′ are feasible. Obviously (1) is feasible. Moreover, the pairs

(3), (6), (7), (8) and (9) are feasible because they contain u. Recall that µk(d
′
1), µk(d

′
2), h̃

are already in the room at loop k while h′ enters the room at loop k. Therefore h′ 6=
h̃, µk(d

′
1), µk(d

′
2), and pairs (2), (4) and (5) are feasible.

Now, we show Chc′(H′′) = (h′, h̃). By induction hypothesis (i), couple c′ (weakly) prefers

pair (1) to pairs (3), (7) and (9). By induction hypothesis (ii), couple c′ (strictly) prefers

pair (1) to pairs (2) and (8). Now consider the blocking coalition that was satisfied,[
c′, (h′, ĥ)

]
. Since

[
c′, (h′, ĥ)

]
is a blocking coalition for µk, (h′, ĥ) is preferred to (1). By

definition, (h′, ĥ) is (weakly) preferred to pairs (4) and (6). Summarizing, the pair (h′, ĥ)

is (weakly) preferred to pairs (1),(2),(3),(4),(6),(7),(8) and (9). Lastly, since
[
c′, (h′, h̃)

]
is a blocking coalition for µk+1 and µk+1(c′) = (h′, ĥ), (h′, h̃)Pc′ (h

′, ĥ). This implies

(b1) Chc′(H′′) = (h′, h̃). Clearly, (b2) (µk(d
′
1), µk(d

′
2)) ∈ H′′.

We now show (b3) h′, h̃ /∈ {u, µk(d′1), µk(d
′
2)}. Since h′ enters the room in loop k, h′ /∈

{u, µk(d′1), µk(d
′
2)}. Since

[
c′, (h′, h̃)

]
is a blocking coalition for µk+1,

[
c′, (h′, h̃)

]
is also a

blocking coalition for µk. Hence, by definition of (h′, ĥ), if h̃ ∈ {u, µk(d′1), µk(d
′
2)}, then

(h′, ĥ)Rc′(h
′, h̃). This contradicts (h′, h̃)Pc′ (h

′, ĥ).

By b1, b2, b3 and only-swap complementarity of Pc′ , we conclude

(µk(d
′
1), h̃)Pc′ (µk(d

′
1), µk(d

′
2)) or (u, h̃)Pc′ (µk(d

′
1), µk(d

′
2)).

This contradicts inductive hypothesis (ii).
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