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Abstract
We study private communication between jury members who have to de-

cide between two policies in a majority vote. While interests of all agents are
perfectly aligned, only some agents (“experts”) receive a private noisy signal
about which policy is correct. Each expert can, but need not, recommend
a policy to her audience of “non-experts” prior to the vote. We show theo-
retically and empirically that communication can undermine (informational)
efficiency of the vote and hence reduce welfare. Both efficiency and stability
of communication hinge on the structure of the communication network. If
some experts have distinctly larger audiences than others, non-experts should
not follow their voting recommendation. We test the model in a lab experi-
ment and find supporting evidence for this effect and, more generally, for the
importance of the network structure.
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1 Introduction

1.1 Motivation

Majority voting is a major form of collective decision making. As such, it is intensely
studied in economics. However, the largest part of the literature ignores communi-
cation, although in reality, people often take advice before they vote. For instance,
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Switzerland; and Liechtenstein-Institute. Email: berno.buechel@unisg.ch. Web: www.berno.info
‡University of Hamburg, Department of Economics, von-Melle-Park 5, D-20146-Hamburg, Ger-

many. Phone: +49 40 42838 9484. Email: Lydia.Mechtenberg@wiso.uni-hamburg.de

1



family members or neighbors who are more deeply interested in politics or better
informed might try to convince others to vote like them.1 Generally, people often
build their opinion on the issues of national referenda after listening to their peers
or reading their favorite blog. On a smaller scale, consider a committee, say, of a
university faculty. Prior to the official meeting, stressed-out committee members
happen to talk to others who had the time to read the documents on which the
upcoming committee vote should be based. Some committee members even provide
a more or less explicit recommendation on what to decide on an upcoming issue
in an upfront email message.2 Hence, the question arises whether communication
channels that admit such prevote communication are desirable, in particular when
designing institutions and organizations, or whether they can even be harmful. Un-
der general conditions, it has been shown that public communication leads to efficient
information aggregation due to deliberation of private signals (Gerardi and Yariv,
2007 and Goeree and Yariv, 2011). However, prevote communication need not be
public, but can also be – at least partly – private, as illustrated by the examples
above. Surprisingly, the effects of (partly) private advice on the use of information
in voting are largely understudied. To our knowledge, we are the first addressing
this issue. Within a common-interest setting, we show that prevote communication
in the form of vote recommendations from “experts” to “non-experts” can impede
efficient information aggregation even though it is truthful.

A negative effect of private prevote communication on efficiency can occur if the
social network connecting voters who are imperfect experts on the issue at stake
with initially uninformed voters is not sufficiently balanced, i.e., if one expert has a
somehow larger audience of uninformed voters than the other experts. Since in some
such networks it is an equilibrium strategy for the uninformed voters to follow the
vote recommendation of the experts to whom they are listening, wrongly informed
experts may get too much weight in the vote. Then, the voting outcome is less
efficient than it would have been in the absence of prevote communication. We show
that a sufficient condition for networks in which truthful communication is both a
perfect Bayesian equilibrium and harmless can be characterized by an analogous
cooperative voting game between the experts in which all experts have the same
Banzhaf power index or, likewise, the same Shapley-Shubik index. Based on these
theoretical insights, we conducted two experiments that validate the comparative
statics of our theory and reveal that in the lab, too, communication sometimes
impedes efficient information aggregation.

To better understand when prevote communication can be harmful and when
it is harmless, consider communication networks in which experts give private vot-
ing recommendations to non-experts and each non-expert listens to one or more
experts.3 Such a communication stage is introduced into a standard voting game.
Nature draws the binary state of the world and the imperfect but informative sig-
nals on it that the experts receive. Both states of the world are equally likely. Each

1Approximately 30% of the U.S. population report that they give vote recommendations to
their peers often or sometimes (see Carpini, Cook, and Jacobs, 2004, p.323).

2We thank Stefan Bühler for this anecdote.
3In the main part of our paper, we consider networks in which each non-expert listens to only

one expert; but we extend the model to show how our results generalize if we drop this simplifying
assumption.
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expert receives only one signal, and signals are independent across experts. Some
experts have audiences of one or more uninformed voters and can send one out of
two possible messages to their audience or keep silent. Then, a vote takes place to
decide which of two possible policies shall be implemented. Only the policy match-
ing the true state of the world generates a strictly positive payoff for all individuals
(the other policy generates a zero payoff for everyone).4 Experts and non-experts
individually and simultaneously decide between voting for one or the other policy
and abstaining. Voting is costless.5 The policy that gets a simple majority of votes
is implemented. In case the voting outcome is a tie, the policy to be implemented
is randomly drawn, where both policies have equal probability. Consider now an
expert whose audience is a substantial part of the voting population and follows
her vote recommendation; i.e., this expert is an opinion leader. Being pivotal with
a vote that follows the opinion leader’s recommendation implies that many voters
from the rest of the population voted for the opposite, which implies, in turn, that
they had information contradicting the opinion leader’s recommendation. Hence,
conditioning on pivotality, it is more likely that the voting recommendation of the
opinion leader is wrong rather than correct. More generally, in highly unbalanced
networks following the vote recommendation is neither informationally efficient nor
equilibrium behavior. We theoretically find that the voting equilibria are char-
acterized by informational efficiency if the communication network is sufficiently
balanced or sufficiently unbalanced. However, for “mildly unbalanced” communica-
tion networks there are voting equilibria that are informationally inefficient due to
(truthful) prevote communication. An important feature of our model is that the
exogenously given network structure only determines the system of communication
channels that can potentially be used, while there is always an efficient equilibrium
without communication.

Testing our theoretical predictions in two lab experiments, we find that unin-
formed voters are indeed more inclined to abstain when they listen to an overly
powerful opinion leader, but that abstention still occurs too rarely to prevent a loss
in informational efficiency induced by highly unbalanced communication. Experts
tend to pass on their information to their audience whenever they feel well informed
(in particular in comparison to biased “partisan” senders) but become more reluc-
tant to do so when they are in the position of an overly powerful opinion leader and
feel not too well informed. In the experiments, the loss in informational efficiency is
the larger, the more unbalanced the communication network becomes. Intuitively,
the more unbalanced the network structure, the less balanced is power such that the
final outcome is determined by the message of a few agents, in contrast to the Mar-
quis de Condorcet’s original idea of aggregating information in the entire collective
(De Caritat, 1785).

4For instance, a jury has to decide whether to convict or acquit a defendant; or a parliament
aiming at protecting their country from a potential aggressor has to decide whether imposing
economic sanctions on the latter is helping them to do so.

5With costs of voting, the pivot probability which might change across equilibria in different
networks would affect the willingness to abstain. Since we want to isolate the effects of communi-
cation on voting behavior, we abstract from voting costs. This is also a convention in the literature
on jury voting. In the lab, costless voting makes the “willingness to delegate to the expert” harder
to find and hence more surprising.
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1.2 Related Literature

Condorcet’s argument that majority voting among independently informed voters
efficiently aggregates private signals, i.e., his “Jury Theorem,” is a cornerstone of
the justification of the majority rule, and, even more generally, of making collective
decisions by voting. His argument has been seriously challenged by Austen-Smith
and Banks (1996) and Feddersen and Pesendorfer (1996, 1997, 1998) who study vot-
ers as strategic actors. As they show, to vote in line with one’s private information,
i.e., to “sincerely” cast the vote for the alternative that maximizes unconditional ex-
pected utility, is not automatically an optimal decision. When restricting attention
to the cases in which one’s own vote is decisive, the resulting conditional expected
utility may be different. Hence, we assume strategic voting when solving our model,
but also address the question when sincere and strategic voting lead to the same
strategies.

In the absence of communication, Feddersen and Pesendorfer (1996) find that it is
optimal for rational voters with common interests to abstain if they are uninformed
and to vote in line with their independent private signal if they are informed.6 This
“let the experts decide” behavior not only forms an equilibrium, but also exhibits
informational efficiency. In their experimental study of the model of Feddersen and
Pesendorfer (1996), Battaglini, Morton, and Palfrey (2010) find that this equilib-
rium provides a good prediction for real behavior. Morton and Tyran (2011) have
extended the model of Feddersen and Pesendorfer (1996) to include heterogeneity
in information quality among the informed voters and find that less well informed
voters generally tend to abstain and delegate the collective decision to the better
informed voters. Hence, the tendency to “delegate to the expert” seems quite strong
in the lab. This suggests that the “let the experts decide” equilibrium might be a
good prediction even in more general models of information aggregation by majority
votes. Accordingly, we consider it to be a benchmark equilibrium in our model, too.

However, the selection of this equilibrium hinges on the assumption that all
participating voters enter the majority vote with independent private pieces of in-
formation – which is fulfilled in the standard model of jury decision making.7 But
the picture becomes more complicated when a mechanism is introduced that leads
to correlated information among voters, despite their private independent signals.
To our knowledge, the existing literature on jury decision making has considered
two such mechanisms: Public communication (deliberation), and additional public

6Since Feddersen’s and Pesendorfer’s ingenious contribution, the finding that uninformed jury
members are better off abstaining from the vote has been dubbed the swing voter’s curse. More
generally, a voter is “cursed” if his optimal strategy conditional on his pivotality differs from what
he would deem optimal if he did not condition his strategy on being pivotal, i.e., what he would
choose as a dictator. We adopt this way of speaking. If one deviates from the assumption of
common interests by introducing a number of “partisans” who always vote into a pre-specified
direction, then abstention does no longer need to be the optimal strategy of the uninformed voters.

7Levy and Razin (2015) provide a model on informed voting which includes heterogeneous
preferences among voters, different sources of information for each voter and voters who neglect
the correlation between their information sources. They show that correlation neglect may improve
the informational efficiency of the vote since it makes voters put more weight on information than
on the conflict of interest. As the the standard model of informed voting with common interests,
their model assumes that information remains uncorrelated across different voters.
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signals.8 Gerardi and Yariv (2007) show that introducing public communication
prior to the vote admits the same set of (sequential) equilibria for a whole set of
voting rules. Intuitively, the information aggregation that the vote has to achieve in
the standard model is shifted up the game tree and is now obtained in the commu-
nication stage already. Goeree and Yariv (2011) validate this insight experimentally
and document that public communication fosters informational efficiency under gen-
eral conditions. By contrast, introducing a public signal on the state of the world
prior to the vote changes the picture dramatically. Kawamura and Vlaseros (2013)
find that the presence of a public signal generates a new class of equilibria in which
voters discard their private information in favor of the public signal and information
aggregation is inefficient, even if voters condition their strategy on their pivotality.

We introduce a third way of correlating voters’ information into the standard
model of jury decision making: private communication between informed and unin-
formed jury members. We show that the way in which private communication affects
information aggregation is closer to the effects of a public signal than to the effects
of public communication: Although efficient equilibria always exist (in particular,
of the “let the experts decide” type), there are also equilibria (in particular, of the
“sincere” type) in which information is inefficiently aggregated. The latter equilibria
and their corresponding “sincere” strategies are more frequently played in the lab
than the former such that private communication indeed undermines informational
efficiency if some experts are too powerful. In an extension, we study a model that
has both private communication and public communication as a special case, and
hence builds a bridge between deliberation and the “swing voter’s curse.”

2 The Model

Nature draws one state of the world, ω, which has two possible realizations, A
and B, that occur with equal probability and are not directly observable. There
is a finite set of agents partitioned into a group of experts M and a group of non-
experts N . Experts j ∈ M receive a private independent signal sj ∈ {A∗, B∗}
about the true state of the world. The signal is imperfectly informative with quality
p = Pr {sj = A∗ | ω = A} = Pr {sj = B∗ | ω = B} ∈

(
1
2
, 1
)
. Non-experts i ∈ N

do not receive a signal, but can potentially receive a message from an expert. A
bipartite graph g, consisting of links (i, j) ⊆ N ×M , represents the communication
structure between non-experts and experts. The degree di is the number of links of
agent i. An expert j with dj > 1 is called sender and all non-experts linked to j
are called the “audience of j.” Different audiences do not overlap, i.e., the degree of
each non-expert is at most one, and the network structure is common knowledge.9

8In a recent theory paper, Battaglini (2015) allows for communication between citizens in
separate audiences so that information becomes correlated among the citizens in one audience.
However, in his model, citizens cannot vote on policies directly but coordinate on public protest
instead, potentially signing a petition against the policy maker’s default policy. Battaglini shows
that communication in social media can improve information aggregation and transmission via
public protests.

9Under these assumptions on the network structure – being bipartite and admitting each non-
expert to have at most one link – no agent can access more than one piece of information. This
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After receiving the signal, each sender may send message “A” or message “B” or
an empty message ∅ to her audience. Then, all agents simultaneously participate in a
majority vote the outcome of which determines which of two alternative policies, PA
or PB, shall be implemented. Voters simultaneously vote for one of the two policies
or abstain. If one policy obtains a simple majority of votes, it is implemented;
otherwise, the policy to be chosen is randomly drawn with equal probability from
the two alternatives.

All agents have the same preferences: They want the policy to match the state
of the world. More precisely, their utility is u(PA|A) = u(PB|B) = 1 and u(PB|A) =
u(PA|B) = 0.10

The sequence of actions is as follows. First, nature draws the state of the world
and the signals of the experts. Second, each sender decides which message to
communicate to her audience, if any. Third, all agents vote or abstain and the
outcome is determined by the simple majority rule. Hence, strategies are defined
as follows: A communication and voting strategy σj of a sender j ∈ M defines
which message to send and whether and how to vote for each signal received, i.e.,
σj : {A∗, B∗} → {A,B, ∅} × {A,B, ∅} if dj ≥ 1 and σj : {A∗, B∗} → {A,B, ∅} if
dj = 0. A voting strategy of a non-expert i ∈ N with a link is a mapping from
the set of messages into the voting action σi : {A,B, ∅} → {A,B, ∅}, and a voting
strategy of an agent i ∈ N without a link is simply a voting action σi ∈ {A,B, ∅}.
A strategy profile σ consists of all experts’ and all non-experts’ strategies.

We analyze this model using the concept of perfect Bayesian equilibrium, i.e.,
agents use sequentially rational strategies, given their beliefs, and beliefs are updated
according to Bayes’ rule whenever possible. Mostly, we focus on two focal strategy
profiles, one with information transmission (“sincere”) and one without information
transmission (“let the experts decide”).11 We always assume strategic voting, i.e.,
voters condition their beliefs on pivotality.

Note that if all non-experts in a given audience choose not to condition their
voting action on the message received, then the outcome of the game is as if com-
munication was not possible at all (“babbling equilibrium”). Similarly, if all non-
experts in a given audience vote B if the message is A and vote A if the message
is B, then the outcome of the game is as if their sender has chosen another com-
munication strategy, where messages A and B are permuted (“mirror equilibria”).
We will not differentiate between mirror equilibria, i.e., on the basis of the syntax
of information transmission. Instead, we will identify equilibria via the semantics of
information transmission, i.e., on the basis of the meanings that messages acquire
in equilibrium.12

A desirable property of an equilibrium is informational efficiency which is defined
as follows.

Definition 1. A strategy profile σ is efficient if it maximizes the probability of the

assures that information aggregation can only take place in the voting stage but not in the com-
munication stage. In Section 4 we study an extension of the model in which audiences can overlap.

10Here, we follow the convention to define cardinal utility levels, although this assumption is not
necessary.

11A more comprehensive equilibrium analysis is provided in Appendix C.1.
12This is standard in the cheap talk literature starting with Crawford and Sobel (1982).
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implemented policy matching the true state of the world. Equivalently, a strategy
profile σ is efficient if it maximizes the sum of expected utilities of all experts and
non-experts.

For a given draw of nature, let us call the signal that has been received by most
experts the majority signal. In our model, an efficient strategy profile is charac-
terized by always implementing the policy indicated by the majority signal.13 For
convenience, we let the number of experts m := |M | be odd such that there is always
a unique majority signal indicating the policy that should be implemented.14 While
the definition of informational efficiency above is binary, strategy profiles can also be
ranked according to their informational efficiency by comparing their corresponding
probabilities of matching the true state.

Hereafter, we will slightly misuse notation by using “A” and “B” to denote
the corresponding state of the world, signal content, message content, and policy,
whenever the context prevents confusion.

2.1 Let the Experts Decide

One important feature of the model is that informational efficiency can always be
obtained in equilibrium, regardless of the network structure. Consider for instance
the strategy profile σ∗ in which all experts vote in line with their signal and all
non-experts abstain. Under the simple majority rule this “let the experts decide”
strategy profile σ∗ is efficient since for any draw of nature the signal received by
a majority of experts is implemented. Moreover, because preferences are homoge-
neous, efficient strategy profiles do not only maximize the sum of utilities, but also
each individual agent’s utility. Thus, there is no room for improvement, as already
argued in McLennan (1998).

Proposition 1. There exist efficient equilibria for any network structure. For in-
stance, the “let the experts decide” strategy profile σ∗ is efficient and an equilibrium
for any network structure.

Importantly, while efficient strategies constitute an equilibrium, the reverse does
not hold true: Existence of an equilibrium does not imply that it is efficient. On the
contrary, there are (trivial and non-trivial) inefficient equilibria of the game. One
non-trivial inefficient equilibrium will be discussed as Example 3 below.

Among the efficient equilibria, we consider the “let the experts decide” equilib-
rium σ∗ focal for two reasons. First, it is simple: All experts use the same type of
strategy and all non-experts use the same type strategy. Second, it is intuitive to
abstain as a non-expert and to vote one’s signal as an expert, as already argued, e.g.,
by Feddersen and Pesendorfer (1996). However, since it is also intuitive for experts

13Given efficient strategy profiles, the probability of matching the true state is maximized but
not equal to one because it might always happen by chance that most experts receive the wrong
signal. Letting the number of experts grow, this probability approaches one as in Condorcet’s Jury
Theorem.

14Admitting an even number of experts would not change the results qualitatively, but it would
make the analysis cumbersome because more cases had to be distinguished.
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to send informative messages and for receivers to vote according to their messages, it
may nonetheless be difficult to coordinate on σ∗. In particular, consider the strategy
profile σ̂ in which experts communicate and vote their signal and non-experts vote
their message and abstain if they did not receive any information. This strategy
profile σ̂ is sincere in the sense that each agent communicates and votes the alter-
native that she considers as most likely given her private information.15 We now
proceed by investigating the sincere strategy profile.

2.2 Sincere Voting

Balanced networks. To characterize under which conditions on the network
structure the sincere strategy profile σ̂ is an equilibrium and how the network struc-
ture affects the extent to which σ̂ aggregates the experts’ information efficiently, we
use the following definition.

Definition 2 (Balancedness). Order the degree distribution in M in decreasing order
(d1, d2, ..., dm) such that dj ≥ dj+1; and denote the number of links by l :=

∑m
i=1 dj.

16

For m = |M | ≥ 5 and m odd, we call a network

(a) “ strongly balanced” if at most half of the links are concentrated on the highest-

degree expert and the m−3
2

highest-degree other experts, i.e., d1 +
∑m−1

2
j=2 dj ≤ l

2
;

and

(b) “ weakly balanced” if at most half of the links are concentrated on the highest-
degree expert and the m−3

2
lowest-degree experts, i.e., d1 +

∑m
k=m+5

2
dk ≤ l

2
.

Proposition 2. Let m = |M | ≥ 5, let m be odd, and let the number of links
l :=

∑m
j=1 dj be even. The sincere strategy profile σ̂ is an equilibrium if (a) the

network is strongly balanced, and only if either (b) the network is weakly balanced
or there is an agent who is never pivotal. The sincere strategy profile σ̂ is efficient
if and only if (a) the network is strongly balanced.

Strong balancedness and hence the sufficient condition (a) of Proposition 2 is
illustrated in the following example.

Example 1 (strongly balanced). Let n = 4, m = 5, and the degree distribution of
experts (d1, d2, d3, d4, d5) = (1, 1, 1, 1, 0) as illustrated in the left panel of Figure 1.
This network is strongly balanced (since d1+d2 ≤ l

2
which is 2 ≤ 2). By Proposition 2

the sincere strategy profile σ̂ is efficient and an equilibrium.

Observe in the example that under the sincere strategy profile σ̂ any three experts
who vote and communicate the same alternative determine the final outcome. Thus,
for any draw of nature the policy indicated by the majority signal is implemented,
which means that information is aggregated efficiently and hence σ̂ is an equilibrium.

15The “let the experts decide” strategy profile σ∗, in contrast, is not “fully sincere” for the
following reason. The aspect that information is not transmitted either means that senders do not
communicate their signal or that receivers do not follow their message.

16If two experts have the same degree, then the ordering does not matter.
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Strong balancedness is a strong condition on the equality of the degree distri-
bution. In the proof of Proposition 2 we show that strong balancedness is not only
equivalent to efficiency of the sincere strategy profile σ̂, but also equivalent to the
following property of σ̂: The hypothetical outcome of a vote in which the experts M
alone participate coincides with the outcome of voting in the entire society M ∪N
for any realization of the draws of nature (cf. Lemma B.1).

Consider now weak balancedness. Proposition 2 states that if all players can be
pivotal under the sincere strategy profile σ̂, then weak balancedness is a necessary
condition for σ̂ to be an equilibrium. Necessity can be illustrated with an example
of a network that violates weak balancedness when showing that σ̂ is not an equi-
librium. Networks violating weak balancedness also violate strong balancedness and
will be called “unbalanced” hereafter.

Example 2 (star). Let n = 4, m = 5, and the degree distribution of experts
(d1, d2, d3, d4, d5) = (4, 0, 0, 0, 0) as illustrated in the right panel of Figure 1. This
network violates weak balancedness (since d1 + d5 6≤ l

2
which is 4 6≤ 2) and therefore

also strong balancedness. Hence, by Proposition 2 the sincere strategy profile σ̂ is
neither efficient nor an equilibrium (every voter is pivotal for some draw of nature).

To see why σ̂ is inefficient in the example, consider a draw of nature by which the
most powerful expert, i.e., the expert with the highest degree, receives the minority
signal. Assume now, for the sake of argument, that the sincere strategy profile σ̂
is played. In this case the minority signal determines which policy is implemented;
information is hence aggregated inefficiently. To see why σ̂ is not an equilibrium,
consider the following two deviation incentives. First, the most powerful expert
would want to deviate to not communicating, but still voting, her signal. This would
lead to an efficient strategy profile of the “let the experts decide” type. Second, the
non-experts, too, can improve by deviating. In particular, consider a non-expert
receiving message A. His posterior belief that A is true is pi(A|A) = p > 1

2
. However,

his posterior belief that A is true, given that he is pivotal, is pi(A|A, piv) < 1
2

because in this simple example pivotality only occurs when all other experts have
received signal B. Thus, abstention or voting the opposite of the message is a strict
improvement for any non-expert.

Example 2 provides a simple illustration of the swing voter’s curse. The argu-
ment, however, is much more general. Assume that all agents play according to
the sincere strategy profile σ̂ and consider the receivers who belong to the largest
audience. These receivers know that their sender is very powerful. Hence, if they
are pivotal in the vote, this implies that a considerable number among the other
experts must have got a signal that contradicts the message they received. Thus, if
following the message has any effect on the outcome, it has most likely a detrimental
effect. If a receiver in the largest audience realizes that he is “cursed” in this sense,
he wants to deviate from the sincere strategy and prefers to abstain or to vote the
opposite.

In fact, this is the intuition for the proof of the necessary condition in Propo-
sition 2. If condition (b) does not hold, an agent i listening to the most powerful
sender infers from her pivotality that the received message must be the minority
signal and is thus less likely to match the true state of the world than the opposite
choice.
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Figure 1

Figure 1: Left: Example 1, which is a network satisfying strong balancedness. Right: Example 2,
the star network, which is an unbalanced network.

Weighted majority games. Proposition 2, in particular sufficiency, can also be
re-interpreted in terms of expert power as defined in so-called weighted majority
games (cf., e.g., Roth, 1988). To see this, note that our model defines a non-
cooperative game under incomplete information which is specified by an exogenous
network g. To each of these games Γ(g), we can associate a cooperative game
(M,υ), i.e., a cooperative game among the experts, with the characteristic function
υ : 2M → {0, 1} such that a coalition S ⊆ M is winning, i.e., υ(S) = 1, if and only
if this coalition of experts together with their audiences have a majority of votes,
i.e.,

∑
j∈S(dj + 1) > m+l

2
. This is a weighted majority game among experts in which

each expert j’s weight is dj +1, making the implicit assumption that all non-experts
linked to an expert follow her recommendation, as it is the case under σ̂.

In weighted majority games, a player’s power is measured by the Shapley value,
which is then called the Shapley-Shubik index, or alternatively, with the Banzhaf in-
dex. Both indices take into account how often a player can “swing” a losing coalition
into a winning coalition. In the weighted majority game, for instance, corresponding
to Example 1, i.e., the majority game with weights (w1, ..., w5) = (2, 2, 2, 2, 1) and
quota 5, all players are equally powerful since the winning coalitions are those which
have at least three members. The upcoming corollary of Proposition 2 shows that
this observation fully generalizes.

Definition 3 (Power). For a network g, define power of an expert j ∈ M as
her Banzhaf index βj(υ) or her Shapley-Shubik index φj(υ), in the corresponding
weighted majority game (M,υ) with υ(S) = 1 if and only if

∑
j∈S(dj + 1) > m+l

2
.

The (raw) Banzhaf index of an expert j ∈M is the fraction of swings she has, i.e.,
βj(υ) = 1

2m−1

∑
S⊆M\{j}[υ(S ∪ {j}) − υ(S)]; the Shapley-Shubik index (SSI) of an

expert j ∈M is her marginal contribution averaged over all orderings of the experts,
which can be written as φj(υ) =

∑
S⊆M\{j}

|S|!(m−|S|−1)!
m!

[υ(S ∪ {j})− υ(S)].

Corollary 1. Let m and l be as in Proposition 2. The sincere strategy profile σ̂ is
an equilibrium if (a) all experts are equally powerful in the corresponding weighted
majority game (M,υ) and only if either (b) the coalition consisting of the most
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powerful expert and the m−3
2

least powerful experts is not winning in (M,υ) or there
is an agent who is never pivotal. Moreover, the sincere strategy profile σ̂ is efficient
if and only if (a) all experts are equally powerful.

The corollary is a simple reformulation of Proposition 2 using that (a) strong
balancedness is equivalent to equally powerful experts and (b) weak balancedness is
equivalent to υ(M ′) = 0 when M ′ consists of the most powerful expert together with
the m−3

2
least powerful experts. Recalling that experts are equally well informed,

it is intuitive that equal power of experts means efficiency of σ̂.17 To illustrate the
necessary condition (b), we observe that the existence of a dictator, i.e., a player
j who has a swing in every coalition S ⊆ M \ {j}, leads to a violation of the
necessary condition. In particular, a dictator has the maximal Banzhaf index and
the maximal Shapley-Shubik index of one and any player following the dictator’s
message is “cursed” in the sense that if the own vote is decisive under σ̂, then the
opposite of the message is preferred. An example illustrating this effect is given by
the weighted majority game corresponding to Example 2, i.e., the majority game
with weights (w1, ..., w5) = (5, 1, 1, 1, 1) and quota 5, in which expert 1 has dictatorial
power.18

Inefficient equilibria. Note that Proposition 2 (as well as Corollary 1) provides
one sufficient and one necessary condition for the sincere strategy profile σ̂ to be
an equilibrium, but no condition that is both sufficient and necessary. For such
a condition, see Proposition C.5 in Appendix C.2. For networks that satisfy the
necessary condition (weak balancedness), but violate the sufficient condition (strong
balancedness) the sincere strategy profile σ̂ is inefficient but potentially still an
equilibrium. More generally, the question arises whether there are equilibria with
information transmission prior to the vote that are inefficient.

Proposition 3. There are networks in which the sincere strategy profile σ̂ is both
an equilibrium and exhibits informational inefficiency.

One example demonstrating the above proposition is given below.

Example 3 (weakly balanced). Let n = 4, m = 5, and the degree distribution of
experts (d1, ..., d5) = (2, 2, 0, 0, 0) as illustrated in Figure 2. In this network the sin-
cere strategy profile σ̂ is inefficient because the network violates strong balancedness.
However, the sincere strategy profile σ̂ is an equilibrium in this network (see proof
of Proposition 3 in Appendix B).

Overall, we can conclude that communication need not, but can impair infor-
mation aggregation in equilibrium, depending on the balancedness of the network
structure. In strongly balanced networks (such as in Example 1), σ̂ is both effi-
cient and an equilibrium. In weakly balanced networks that are no longer strongly
balanced (such as in Example 3), σ̂ can still be an equilibrium, but is always in-
formationally inefficient. Finally, in unbalanced networks (such as in Example 2)
neither property holds. There the swing voter’s curse occurs such that non-experts
can profitably deviate from σ̂ by not following their message.

17In section 5 we discuss and relax the assumption of equal signal precision.
18The weighted majority games corresponding to Examples 1 and 2 are extreme cases with

minimal, respectively maximal, inequality of expert power.
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Figure 2

Figure 2: Example 3, a network in which the sincere strategy profile σ̂ is both inefficient and an
equilibrium.

2.3 Equilibrium Selection

Whether real people account for the swing voter’s curse in unbalanced networks
is an empirical question. Therefore, it may be helpful to bring the theory to the
lab and find out how experimental subjects play the game in various networks that
differ in the balancedness of their degree distribution. Hence, the first purpose of the
laboratory experiment is to test the comparative-statics of our theory. The second
purpose is to empirically study equilibrium selection. In particular, in the case of
weakly balanced networks that are not strongly balanced the quality of information
aggregation depends on whether the agents manage to coordinate on the efficient
“let the experts decide” equilibrium or whether they coordinate on the inefficient
sincere equilibrium, or on other potential equilibria. This question is hard to answer
theoretically, since both the “let the experts decide” strategy profile σ∗ and the
sincere strategy profile σ̂ are intuitive and hence focal.

To theoretically prepare the experimental equilibrium selection, we also have to
address the question of additional, non-focal equilibria. To illustrate the types of
strategy profiles that, in addition to the “let the experts decide” strategy profile and
the sincere strategy profile, can become equilibria, we extend the equilibrium analysis
of our Examples 1, 2, and 3. This is particularly useful since these examples are also
implemented in our experiment. In Appendix C.1, we give a full characterization of
all equilibria conforming to four selection criteria (Purity, Symmetry, Monotonicity,
and Neutrality). It shows that one more strategy than considered so far contributes
to equilibrium formation, namely a delegation strategy according to which experts
with an audience delegate their vote to their audience by revealing their signal and
abstaining themselves. Moreover, there are equilibria in which experts who are never
pivotal abstain from voting without delegating their vote. However, there are no
additional strategy profiles that arise as equilibria in these examples. All equilibria
conforming to our selection criteria are composites of the “let the experts decide”
strategy profile, the sincere voting profile, and the delegation or abstention strategies
of experts.
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2.4 Extension: Partisans and Propaganda

So far, we have assumed that non-experts listening to a sender can always trust in
common interests. This, however, need not be true in reality. Experts might be
secretly biased and send out wrong information in order to win the uninformed over
into unknowingly supporting their own particular interests. In this case, non-experts
would often wrongly trust to get truthful advice. Hence, we extend our model to
include biased senders, i.e., “partisans” who have strict preferences for one of the two
policies, regardless of the state of the world. Partisans preferring policy PA (PB) will
be called A-partisans (B-partisans). In the extended model, non-experts are aware
of the presence of partisans, but cannot tell partisans from honest experts and hence
can no longer be sure that they listen to someone sharing their interest in matching
the true state of the world. We only consider networks with the same number of
A- and B-partisans which has basically the same effect as decreasing the expected
reliability that non-experts ascribe to their sender’s message. In Appendix C.3,
we provide a full description of the extended model and show that, unsurprisingly,
all theoretical results obtained for the model without partisans (Propositions 1-3)
also hold true for the model with partisans (Propositions C.6-C.8). This extension
serves a twofold purpose: First, it shows that our results are robust in a more
realistic setting in which a “sender” of information on the state of the world is not
always an honest expert but can also be biased. Second, it captures some aspects of
propaganda since in reality, partisans and experts both communicate to audiences
of different size, for instance via internet blogs. Hence, it is of some interest to
test whether propaganda can have an unlimited influence on the outcome of votes
in which the uninformed and the experts have the common interest of “getting it
right,” or whether there is an upper limit to the influence of propaganda due to the
deviation incentive that drives non-experts in over-sized audiences to abstain.

3 The Experiment

In the experimental part, we address two questions: First, do real people forming
the audience of a potentially informed sender understand that they should stop vot-
ing in line with their sender’s recommendation if the audience becomes too large
compared to the audiences of other senders? That is, do they act in accordance with
the comparative statics of our model? If the answer is yes, this will have the follow-
ing consequences. There will be a limit to sincere voting in networks that are not
strongly balanced and to the resulting informational inefficiency. Moreover, there
will be an upper limit to the influence that partisan propaganda can have on the
outcome of votes in which all non-partisans want to implement the “right” policy.
The second question addressed by the experiments is whether private communi-
cation in networks of varying balancedness can lead to significant inefficiencies in
information aggregation. This would be true if all participants played sincerely, but,
recall, there is always the option to play “let the experts decide” which is efficient
and an equilibrium.
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3.1 Experimental Design

We conducted two experimental studies. In Study I, we implement the empty net-
work, in which communication is precluded, and the three examples – Example 1, 2,
and 3 – analyzed above. The empty network serves as a benchmark, since the sincere
strategy profile σ̂ is impossible to play in the empty network because no sender can
send any message in the empty set. Hence, the “let the experts decide”-equilibrium
is the only focal equilibrium in the empty network. The other three networks differ
in the way described in section 2.2. Hence, Study I directly tests our unextended
model.

In Study II, we again implement the empty network and three examples, the
latter, however, now belonging to the extended version of our model that includes
biased senders. These four networks differ in the following respects: Network 1
is the empty network. Network 2 is the weakly balanced network and is the unique
network among the four in which the sincere strategy profile σ̂ is both an equilibrium
and inefficient, as demonstrated in the proof of Proposition C.8. Network 3, which
we will call the unbalanced network, makes sender 1 too powerful compared to the
other sender, and the strategy profile σ̂, which is again inefficient, is no longer an
equilibrium, though possible to play. The same holds true for network 4, the star
network, which is even more unbalanced.

In total, our experimental design implements the eight different communication
networks depicted in Figure 3. Each of these networks corresponds to one experi-
mental treatment; and within each study, treatments are varied within subjects (i.e.,
all participants in a given session of one study play the communication and voting
game in all four networks) in random order.

Comparing the networks in Study I with those in Study II, we can summarize
that both studies implement the empty network (in which information transmission
is precluded), a weakly balanced network (in which σ̂ is an equilibrium), and the star
network (in which σ̂ is not an equilibrium).19 While Study I accompanies the weakly
balanced network with a strongly balanced network to have an example in which
σ̂ is efficient, Study II accompanies the star network with an unbalanced network
that features different sender degrees within one treatment. Apart from the baseline
treatment, the empty network, the density of the networks is held constant while the
equality of the degree distribution is decreasing. Moreover, the expected probability
of a message being true in the sincere strategy profile, given that the receiver in
Study I knows that he listens to an expert, while the reciever in Study II does not
know whether he listens to a partisan or an expert, is approximately equal and hence
roughly comparable in both studies. Hence, we chose to keep the environment of
Study II similar to Study I for the non-experts, consequently changing it quite a
bit for the experts. We made this choice since our interest in the non-experts is
more intense than our interest in the experts. In sum, Study I and Study II are
not directly comparable, but similar with regard to the non-experts. The clear-cut
comparisons are across treatments within each study.

19Note that the second network in Study I and the second network in Study II look quite similar,
but are essentially different: The former is strongly balanced, the latter only weakly balanced.
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Figure 3

Figure 3: Upper panel: The four treatments of the Study I. Lower panel: The four treatments of
the Study II.

3.2 Experimental Implementation

The experiments were conducted in the WISO-lab of the University of Hamburg in
November 2014 and August and September 2015, using the software z-Tree. We
ran seven sessions within Study I and five sessions within Study II with 3 ∗ 9 =
27, respectively 4 ∗ 7 = 28, participants in each session. All subjects in a session
played the game described above in all four networks over 40 rounds in total. At
the beginning of each session, subjects randomly received the role of an expert
or the role of a non-expert. These roles were fixed throughout the experiment.
In each round, subjects were randomly matched into groups of eight in Study I
and groups of seven in Study II. Groups consisted of four experts and four non-
experts in Study I and three experts and four non-experts in Study II. The four
partisans in Study II were computerized. In line with the equilibrium behavior in
the extended model, A-partisans always vote A and send the message A, and B-
partisans always vote B and send the message B. Groups were newly formed each
round by random re-matching. Each network game was played in ten rounds in
total, but the order of networks across rounds was randomized. Instructions that
described the experimental session in detail were handed out at the beginning of each
session and were followed by a short quiz that tested the subjects’ understanding
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of the game.20 Hence, the experiment started only after each subject understood
the rules of the game. Moreover, there were four practicing rounds, one for each
treatment, that were not payout relevant. During the entire session, each subject
always knew his own network position and the structure of the network. The quality
of the signal that the experts received was p = 0.6 in Study I and p = 0.8 in Study II
which guaranteed that the expected probability of a non-empty message being true
under the sincere strategy profile was approximately equal across both studies. At
the end of each session, three rounds were randomly drawn and payed out in cash
and in private. On average, sessions in Study I and Study II lasted for 1.5 hours
and subjects earned EUR 14.3 and EUR 16.7, respectively.21

3.3 Results

Table 1 in Appendix A gives a summary of the number of observations. On the group
level we have 840 and 800 observations in Study I and Study II, respectively. On the
individual level we have 7,560 (5,600) observations in Study I (II) with 40 decisions
per subject. In total, 189 (Study I) and 160 subjects (Study II) participated in the
experiments.

Pooling all treatments, experts vote for the signal they received 84% and 92% of
times in Study I and II, respectively. If they have an audience they also communicate
their signal 75% and 90% of all times. Those who do not communicate their signal
usually send an empty message. Non-experts vote in line with their received message
on average 69% and 57% of all times. Those who receive a non-empty message but
do not follow it usually abstain. Abstention is also the most common behavior of
non-experts who did not receive a message. As these first descriptives suggest, the
behavior of non-experts exhibits more variance than expert behavior, in particular
in Study II, but also in Study I. Hence, we examine treatment effects for non-experts
and experts sequentially. After analyzing individual behavior in section 3.3.1, we
will turn to the question of efficiency in section 3.3.2. All tables reporting our
experimental results can be found in Appendix A.

3.3.1 Results on Individual Behavior Across Networks

First, we analyze under which conditions on the network structure non-experts who
receive a vote recommendation follow it, i.e., whether laboratory participants ac-
count for our novel form of the “swing voter’s curse.” Second, we investigate com-
munication behavior of experts, i.e., when participants pass on their signal to their
audience. Third, we address equilibrium selection.

Following of vote recommendations. Non-experts in our experiments receive
vote recommendations. Apart from the empty treatments, every non-expert is linked
to an expert sender, who in most cases sends a non-empty message. The equilibrium
analysis of our model showed that the vote recommendation of an expert should

20The instructions can be found in Appendix D.
21The norm in the WISO-lab at the University of Hamburg is EUR 10 per hour.
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Figure 4
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Figure 4: Frequency of non-experts’ following behavior by treatment. Vote message means to vote
A (B) when the message received is A (B). Vote opposite means to vote A (B) when the message
received is B (A). Displayed are responses to non-empty messages. The left panel displays results
for Study I. The right panel displays results for Study II.

only be followed if this expert is not “too powerful” in terms of audience size. More
precisely, the sincere strategy profile σ̂ in which all non-experts follow their messages
is an equilibrium in the strongly and weakly balanced networks of our experiments,
but not in the unbalanced network and the star network (which is also unbalanced).22

As displayed in Figure 4 (and in Table 2 in column ‘vote message’), in around 70%
to 80% of the cases non-experts vote according to their received message in the
balanced networks, where the sincere strategy profile is an equilibrium, but they do
so only in around 50% of the cases in the unbalanced networks such as the star.
These differences are highly significant as can be seen from the logistic regressions
in Table 3, which take the weakly balanced networks as the baseline category. This
holds independent of whether we restrict attention to non-experts who received a
non-empty message or whether we also consider abstaining in the case of an empty
message as “following.” Moreover, regressions in Tables 3a even show that non-
experts tend to follow vote recommendations most often in the strongly balanced
network, in which the sincere strategy profile is not only an equilibrium but also
efficient.

To get more detailed evidence on when non-experts follow their vote recommen-
dations, we move on to heterogeneity among individual participants. Figure 5 shows
how many of the non-experts never and how many always followed their message
in a given position. As many as 57%, respectively 46%, of the non-experts always
follow their message when they are in the strongly balanced balanced network, re-
spectively the weakly balanced network. For the star network this number reduces
to 30% (25%) in Study I (II), strongly suggesting that non-experts react to the
relative degree of their sender, as predicted by theory.

To further test this hypothesis, it is useful to observe how the network position
affects behavior of the non-experts on top of the network type. Since sender degree
and network type are almost perfectly correlated in our experimental setting, we
can do so only by concentrating on the unbalanced network of Study II in which the
degree varies across senders. In the unbalanced network of Study II, non-experts in

22In the experiments, around 80% of the time experts play the sincere strategy σ̂j , and only
around 5% of the time they send a message that contradicts their signal (Table 5).
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Figure 5
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Figure 5: Frequency of individual following behavior by treatment (and position). The variable
‘never’, respectively ‘always,’ reports the fraction of individual participants who never respectively
always followed the non-empty vote recommendation they received for each network position. The
left panel displays results for Study I. The right panel displays results for Study II.

positions 1-3 are linked to a sender with degree three such that following her message
is not a best response to the sincere strategy profile σ̂. By contrast, the non-expert
in position 4 who is linked to the sender with degree one should best respond to σ̂ by
following his message. As can also be seen from Figure 5, 61% of the subjects always
follow their message when they listen to the sender with degree one, while only 30%
do so when linked to the sender with degree three. Differences in individual behavior
across positions are tested with Wilcoxon signed-ranks tests, which are reported in
Table 4: When the sender has degree three or four (i.e., in the star network and
in the unbalanced network in positions 1-3) the non-experts’ following behavior
is different from their behavior in all other network positions. When including
situations in which individual participants receive an empty message (lower block of
Table 4), the same picture arises. Hence, the sender’s (relative) degree has a strong
influence on following: a substantial fraction of individuals never follows the vote
recommendation of too influential senders, while another substantial fraction always
follows.

Non-experts who do not follow a non-trivial message mostly abstain, as can be
seen, e.g., in Figure 4. Thus, the flipside of a significant decrease in followers is a
significant increase in abstentions for the unbalanced networks.

Result 1. Non-experts linked to the expert with the highest degree follow their vote
recommendation significantly more often in the (strongly and weakly) balanced net-
works than in the unbalanced networks (i.e., the star and the unbalanced network).
Within a given unbalanced network, non-experts linked to the sender with the highest
degree follow significantly less often than non-experts linked to the sender with the
lowest positive degree.

Vote recommendations of experts. As mentioned earlier, around 80% of the
time experts vote and communicate in accordance with their signal, which is playing
the sincere strategy σ̂j (Table 5). While experts vote in line with their signal in a
large majority of cases, there are some deviations from the sincere strategy profile on
the communication stage, as can be seen from Figure 6. Information transmission is
lowest in Study I in the star network, where only 61% of the senders communicate
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Figure 6
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Figure 6: Frequency of experts’ communication behavior by treatment. Send signal means to send
message A (B) when the signal received is A (B). Send opposite means to send message A (B)
when the signal received is B (A). The left panel shows results for Study I. The right panel shows
results for Study II.

their signal, whereas 35% choose the empty message. This is a significant difference
in communication behavior, as Table 6a reveals. Moreover, experts send a truth-
ful message more frequently in the strongly balanced network than in the weakly
balanced network. These effects are not present in Study II (Table 6b).23

To further analyze whether experts condition their behavior on the network
structure and their position, we inspect heterogeneity among individual participants.
In Study I, experts’ behavior in the star network differs from their behavior in the
other treatments, both when comparing only senders, i.e., experts with a link, and
only non-senders. This is revealed by Wilcoxon signed-ranks test (Table 7). Both
senders and non-senders are more often sincere in the balanced networks, where this
is a best response to the sincere behavior of all others, than in the (unbalanced)
star network, where this is not a best response. In particular, around 32% of the
senders in the star network never choose the sincere strategy profile in Study I.
The fact that in 73% of these latter cases the signal determines the vote and the
empty message is chosen is an indication that these experts actively target the “let
the experts decide” equilibrium. Interestingly, this effect cannot be observed in
Study II, in which partisans are present and in which signal quality of experts is
lower. In Study II, experts are sincere in a large majority of cases and there are no
systematic deviations from this strategy.24

Thus, although some experts seem to target the “let the experts decide” equilib-
rium in the star network in Study I, most of the time experts play sincere, indepen-
dent of the communication structure. Note that this does not necessarily imply that
those experts never target the “let the experts decide” equilibrium; it might also
mean that the subjects in the role of the experts intentionally delegate equilibrium

23The latter effect cannot be addressed by Study II since there is no treatment with a strongly
balanced network. The former effect, i.e., the reluctance to send the signal in the star network,
may vanish in Study II based on a behavioral reaction to the presence of partisans or to the higher
signal quality.

24The only difference in expert sincerity that is significant on the five percent level in Study
II occurs when comparing the unbalanced network with the star network. This effect suggests
that experts without a link less often vote their signal in the unbalanced network than in the
star network. Since both these networks are unbalanced, the sincere strategy profile is not an
equilibrium in any of them and hence the effect is outside of what our theory addresses.
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Figure 7: Frequency of behavior consistent with strategy profiles σ∗ and σ̂ by treatment. A strategy
profile is “almost” played if at most one agent has chosen a different strategy. The left panel shows
results for Study I. The right panel shows results for Study II.

selection (or “strategy profile selection”) to the non-experts.25 As our experimental
data reveal, it is indeed the non-experts who strongly condition their behavior on
the network structure.

Equilibrium selection. In the equilibrium analysis of our model, we focused on
two pure and symmetric strategy profiles that we consider focal, namely on the
sincere profile σ̂ and the “let the experts decide” profile σ∗. Hence, the question
arises how often these two strategy profiles are indeed played in the lab, both in
general and depending on the network structure.

Figure 7 shows the frequency with which groups play either “let the experts
decide” σ∗ or sincere σ̂. We consider a group as playing almost a strategy profile if
at most one of the nine respectively seven subjects has chosen a different strategy.26

In the empty network, in which σ̂ cannot be played, we find the highest level of
coordination on σ∗. Considering the networks in which both profiles are possible
to play, a decrease in network balancedness leads to a drop in the frequency with
which groups coordinate (almost) on the sincere strategy profile σ̂ and to a sizable
increase in the frequency with which groups coordinate (almost) on the “let the
experts decide” strategy profile σ∗. Fisher exact tests reveal that – apart from the
comparison between the strongly and weakly balanced networks in Study I and the
unbalanced and star networks in Study II – these differences are significant (Tables 8
and 9). Hence, we find support for the comparative statics of our theory on the group
level, too.

Result 2. In the (strongly and weakly) balanced networks, groups coordinate mostly
on the sincere strategy profile σ̂. With decreasing balancedness of the network, groups
coordinate less often on σ̂ and more often on the “let the experts decide” equilibrium
σ∗. Coordination on σ∗ is highest in the empty network. Equilibrium selection in
favor of σ∗ is mainly driven by non-experts who do not follow their message but also
by some experts who send an empty message.

25Another reason might be lying aversion which is common in lab experiments. Not sending a
message or sending a message that contradicts the own signal might “feel like” lying.

26Recall that every group in Study I consists of nine real subjects, while every group in Study II
consists of seven real subjects and four computerized partisans. The partisans play according to
σ∗ and σ̂ by default.
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Hence, we find that the comparative-static predictions of the theory are well
supported by our experimental findings. Before we proceed to our results on the
efficiency of information aggregation, a few remarks on uninformed voting are in
order.

Uninformed voting. Non-experts who receive no message, either because they
are in the empty network or because their sender chose the empty message, are
uninformed. In most of these cases the uninformed non-experts abstain, but in
a substantial fraction of around 30% of cases there is a vote by the uninformed
non-experts, as can be seen from Table 2. This behavior seems independent of
the network structure. To explore individual heterogeneity in uninformed voting
the histograms in Figure 8 depict the frequency of voting actions as a fraction
of an individual’s incidences of being uninformed. The distribution of individual
uninformed voting is clearly U-shaped with two dominant categories: Around 50%
of the participants never vote when uninformed, while there are almost 20% of the
participants who always vote when uninformed.

This finding is in line with the literature, since positive rates of uninformed voting
are found in all experiments on jury voting. Since uninformed votes are no better
than flips of a coin, they have large detrimental effects on informational efficiency,
well documented in the literature.27 In our experiment, it is the empty network in
which all non-experts, trivially, receive no message; hence, if they participate in the
vote, this necessarily implies uninformed voting. Consequently, the absolute number
of uninformed votes is much higher in the empty network than in the other networks.
Thus, the possibility to communicate may serve informational efficiency by reducing
the extent of uninformed voting. However, there might also be detrimental effects
of communication as we will see next.

3.3.2 Efficiency

Informational Efficiency. Informational efficiency is the higher the more of-
ten the signal received by the majority of experts determines the voting outcome.
Figure 9 displays the degree of informational efficiency of voting outcomes across
networks. As is easy to see, in both experiments the star network performs worst
in terms of informational efficiency. Moreover, informational efficiency seems to be
decreasing in balancedness of the network structure.

To test whether differences in informational efficiency across networks are signif-
icant, we create the variable efficiency that takes the value −1 if the voting outcome
matches the signal received by a minority of experts (minority signal), the value 0
if a tie occurs, and the value 1 if the voting outcome matches the signal received
by the majority of experts (majority signal). Fisher exact tests reveal that the star
network exhibits significantly less informational efficiency than the weakly balanced
and the empty network in Study II, while the null hypothesis cannot be rejected in
Study I. Other differences are not significant (except between the empty and the
unbalanced network in Study II). Note that efficiency is also heavily affected by

27Großer and Seebauer (2013) find a 30% rate of uninformed voting. Elbittar et al. (2014) even
find that 60% of the uninformed vote.
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Figure 8: Histogram of individual uninformed voting. For each participant the variable ‘individual
uninformed voting’ counts the number of votes (for A or B) as a fraction of the number of instances
where the individual is uninformed. For each non-expert this occurs ten times in the empty
treatment and it also occurs in the other treatments when an empty message is received. The left
panel displays results for Study I. The right panel displays results for Study II. The size of the bar
shows the fraction of participants in percent.

signal distributions. If, for instance, the five experts in Study I, or the three experts
in Study II, happen to receive the same signal, say A, then it is easier to imple-
ment the majority signal A than when there are signals for both A and B, where
voting errors are more likely to impair informational efficiency. We call a signal
distribution of the form “5:0” (“3:0”) uniform in Study I (II), a signal distribution
of the form “3:2” (“2:1”) non-uniform in Study I (II), and a signal distribution of
the form “4:1” almost uniform. Controlling for the signal distribution reduces the
noise in the analysis of efficiency. Using ordered logit models, we regress efficiency
on the network type, controlling for the signal distribution. Results are displayed
in Table 11. We find again that informational efficiency is lower in the star network
than in the empty network in Study II. Additionally, there is some evidence for the
same effect in Study I. There is also weak evidence that the unbalanced network is
less efficient than the empty network. Moreover, in Study II the star network is also
less efficient than the weakly balanced network.28

Result 3. Informational efficiency is significantly lower in the star network, com-
pared to the empty network (at least in the presence of partisans). There is also
weak evidence that the unbalanced network exhibits lower informational efficiency
than the empty network and evidence that the star network exhibits lower informa-
tional efficiency than the weakly balanced network in the presence of partisans.

The superiority of the empty network compared to the unbalanced networks
is so striking because any strategy profile that is possible to play in the empty
network is also feasible in these unbalanced networks. Providing participants with
the possibility to communicate can hence have a detrimental effect on their voting
outcome.

28This we do not find in Study I probably because one of the differences in behavior between the
two experiments is that in Study I several senders in the star network choose the empty message,
which mitigates the issue of unbalanced communication.
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Figure 9
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Figure 9: Frequency of informationally efficient group decisions by treatment. Left panel displays
results for Study I. Right panel displays results for Study II. ‘Win’ means that the outcome of
voting is the majority signal. ‘Tie’ means that there were as many votes for A as for B such that
the outcome is correct with probability one half.

Economic Efficiency. To test whether the low informational efficiency in the
star network, and probably also in the unbalanced network, affects subjects in an
economically meaningful way, we compute the expected payoff EP for each group
in each round. If the group decision matches the true state, each member of the
group earns 100 points. Hence, the variable EP coincides with the likelihood (in
percentage points) of a correct collective decision, given all signals in the group.
For instance in Study II, if four experts have received signal A and one expert B

and the outcome of the majority vote is A, then EP = p4(1−p)
p4(1−p)+(1−p)4p

∗ 100 which

is approximately 77.14 for p = 0.8.29 Computing EP by network type yields on
average 61 (73) points in the star network in Study I (II) and on average 64 (79)
points in the other networks in Study I (II), as displayed in Table 12.30

Recall that when not controlling for the distribution of signals, there is additional
noise because some treatments might happen to exhibit uniform signals and hence
higher expected payoffs more often than others. We test for significant differences
using OLS regressions and control for uniformity of signals (Table 13). The findings
are analogous to those of Result 3: The inefficiency of the unbalanced networks, in
particular of the star network, is confirmed.

Result 4. Expected payoffs are significantly lower in the star network, compared to
the empty network. There is also evidence that the unbalanced networks (including
the star) exhibit lower expected payoffs than both the empty network and the weakly
balanced network.

Result 4 consists of two separate findings. The comparison among the networks in
which communication is possible shows that an unbalanced communication structure

29If we consider reasonable values of EP to lie between the EP of a dictator who is randomly
chosen from M and the EP of an efficient strategy profile, then the range for Study I is [60, 68.3]
and the range for Study II is [62.9, 89.6].

30Table 12 also displays the actual number of correct group decisions, which is a less reliable
measure of economic efficiency than EP due to the noise induced by imperfect signals. As revealed
by t-tests (not in the appendix) the empirical values of EP are significantly below the EP of an
efficient strategy profile, except for the case of a uniform signal in Study I, i.e., a signal distribution
of the form “5:0,” which virtually always leads to the efficient majority decision.
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can be detrimental to efficiency. The comparison of the unbalanced networks with
the empty network, where communication is precluded, shows that communication
itself can be detrimental to efficiency, confirming Result 3 above.

Avoidability of inefficiency. Finally, we consider only the inefficient group de-
cisions and ask how many deviations would have been necessary in order to induce
the efficient outcome. For this purpose, Table 14 reports how many more votes
the minority signal received, compared to the majority signal, when the former de-
termined the voting outcome or when a tie occured. On average we have a vote
difference of 0.68 (1.14) in Study I (II), reflecting that most inefficient outcomes are
close calls such as ties (where the vote difference is zero) or wins of the minority
signal by one vote (where the vote difference is one). We compare this number to
the number of experts and the number of non-experts who voted for the minority
signal to see who could have prevented the inefficiency. In the non-empty networks,
there are on average roughly two non-experts who voted for the minority signal. If
they abstained, the efficient outcome would have been reached in most of the cases.
In the empty network, inefficiency frequently means that a tie has been reached. As
there is on average roughly one non-expert who, without having any information,
voted for the minority signal, we can conclude that also in this network structure
inefficiency could have been avoided by more abstention of the non-experts. This
observation indicates that there are two sources of inefficiency on the side of the
non-experts: First, uninformed voting when communication is missing; and second,
following too powerful leaders under unbalanced communication.

To summarize, it appears that a strong decrease in balancedness, i.e., a sizable
shift of audience from some senders to one other (or a few others), impairs effi-
cient information aggregation and therefore also voters’ welfare. Hence, although
we find evidence in favor of the comparative statics of our theory and our subjects
do switch from sincere voting to the “let the experts decide” equilibrium if network
balancedness decreases, this switching behavior is not pronounced enough to pre-
vent detrimental effects of unbalanced communication on informational efficiency. If
instead, preplay communication is prohibited altogether, voters can indeed be better
off.

4 Extension: Overlapping Audiences

We have so far assumed that experts’ audiences do not overlap or, equivalently,
that each non-expert listens to at most one expert. In this section we relax this
assumption, while keeping all other aspects of the model as they are defined in
Section 2. In particular, the network structure g is now only assumed to be bipartite,
without any further restrictions. In this more general set-up the definition of the
sincere strategy profile σ̂ is extended as follows: Each non-expert votes for the
message A or B that he has received more often; if both messages have been received
equally often or if there is no message at all, he abstains. As before, each expert
communicates and votes her signal. The definition of the “let the experts decide”
strategy profile σ∗ need not be extended since the non-experts abstain.
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Of our three theoretical results, Propositions 1 - 3, the first and the last trivially
extend. Hence, also in the more general set-up, there always exists an equilibrium
that is efficient, and there can be equilibria (involving sincere information trans-
mission) that are not efficient. The extension of Proposition 2, which provides a
necessary and a sufficient condition for the sincere strategy profile σ̂ to be an equi-
librium is now addressed by using the following definitions. For a set of experts
M ′ ⊆ M , define the partition of non-experts N = {N+, N0, N−} such that all
i ∈ N+ (respectively all i ∈ N−) have strictly more (respectively strictly less) links
into the set M ′ than into the set M \M ′ and denote by n+ and n− the sizes of the
corresponding sets. Moreover, let M(i) be the set of experts that non-expert i ∈ N
is linked to.

Proposition 4. Let m = |M | ≥ 5, and let m be odd. Let the number of links
l :=

∑m
i=1 di be even. In the generalized model with g bipartite the following holds.

The sincere strategy profile σ̂ is an equilibrium if (a) for every M ′ ⊆ M of size
m′ = m−1

2
, we have n+ ≤ n−. Let, additionally, the degree of each non-expert be odd

and larger than zero. Then σ̂ is an equilibrium only if (b) ∀i ∈ N , there does not
exist a M ′ ⊆M(i) such that ∀M ′′ ⊆M \M(i) with m′+m′′+n+(M ′∪M ′′) = m+n+1

2

(and at least one such M ′′ exists), we have m′+m′′ < m
2

. The sincere strategy profile
σ̂ is efficient if and only if condition (a) is satisfied.

The sufficient condition (a) is a generalization of strong balancedness and again
coincides with both informational efficiency and representativeness of σ̂ (cf. Lemma
B.1). It says that for any largest minority of experts M ′ the number of non-experts
who follow this minority must be smaller than the number of non-experts who follow
the complementary set of experts (a smallest majority).

The necessary condition (b) addresses the incentives of a non-expert to follow
the message he received most often. A violation of this condition illustrates its
interpretation. Suppose there is a non-expert who observes a set of experts M ′

sending the same message, say A. If for any additional set of experts whose votes
for A would render i pivotal (call this set M ′′), it holds that a majority of experts
has received signal B, voting for A is not a best response. More generally, let a
non-expert i ∈ N observe some messages and deduce under σ̂ that at least half
of all non-experts follow his majority message (i.e., the message he has received
more often). Then he is “cursed,” i.e., given that i can be pivotal, σ̂i is not a best
response to σ̂−i. The reasoning is trivial: Since at least half of all non-experts follow
i’s majority message, i is only pivotal if at least half of the experts vote for the
opposite. Thus, i’s majority message is the minority signal whenever i is pivotal.

With overlapping audiences, we can not only model private communication but
also public communication. Communication is fully public if the network g is com-
plete bipartite, i.e., every expert is linked to every non-expert. In that case, the
sincere strategy profile σ̂ is efficient and an equilibrium. In this deliberation equi-
librium the majority signal determines votes unanimously (and other voting rules
than the majority rule would also admit a similar equilibrium, cf. Gerardi and Yariv,
2007). More generally, in every network g, in which a non-empty subset N ′ of non-
experts is linked to all experts, there are efficient equilibria in which the members
of N ′ vote for the majority signal. Besides the extreme case of fully public commu-
nication, in which N ′ = N , there is also an extreme case, in which N ′ = {i} is a
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singleton. In the latter the decision is fully delegated to one non-expert who simply
implements the majority signal.

Finally, note that the information transmission network g∗ under some strategy
profile σ need not coincide with the exogenous network g, but can be any subnetwork
(g∗ ⊆ g) of it, which uses some but not necessarily all of the given communication
channels (cf. Appendix C.1). For instance, any network g that contains a subnetwork
g′ ⊆ g which satisfies condition (a) of Proposition 4 admits an efficient equilibrium
by using the subnetwork as communication network, i.e., g∗ = g′. More generally,
for every network g that admits an equilibrium σ, every supernetwork g′ ⊇ g, that
contains all links of g but potentially many more links, also admits an equilibrium
which is outcome equivalent to σ. Our model extensions admits denser networks
g and hence gives rise to many more information transmission networks g∗ ⊆ g
than our baseline model, which was restricted to private communication. As a
consequence, coordination on an efficient equilibrium might become even harder
than in the baseline model, which was tested in the lab experiment.

5 Conclusion

Our experimental evidence supports the comparative-static predictions of our theory
with respect to individual and collective voting behavior, but not with respect to
informational efficiency. While experts mostly play the sincere strategy, non-experts
are highly sensitive to the network structure. The more unbalanced the network,
the more averse are the non-experts linked to the expert with the highest degree to
“follow” her by voting in line with her message, and the more they tend to abstain.
Put differently, non-experts linked to a powerful expert play the less often sincerely
and the more often strategically in networks with an unbalanced communication
structure. Similarly, groups coordinate more often on the “let the experts decide”
equilibrium and less often on the sincere strategy profile if network balancedness
decreases. Nonetheless, this tendency is insufficient to compensate the negative
effects exerted by overly powerful experts in very unbalanced networks, like the star
network. Hence, it is still the empty network in which coordination on the “let the
experts decide” equilibrium works best. However, the empty network opens the door
much wider for uninformed voting than the other networks and does therefore not
exhibit a higher level of informational efficiency than do networks that are balanced.

In our model, efficiency of communication networks depends crucially on the bal-
ancedness of the network structure, which translates into the distribution of power
among the experts. It should be noticed that the efficiency of strongly balanced
networks, respectively the inefficiency of unbalanced networks, is not due to the in-
equality of the experts’ power per se, but due to the inequality of the experts’ power
combined with the homogeneity of their expertise. If we generalize our model such
that every expert j has an idiosyncratic signal precision pj in the interval (1

2
, 1),

then sincere voting is efficient whenever the degree of each expert is (roughly) pro-
portional to log(

pj
1−pj )− 1 (see, e.g., Shapley & Grofman 1984, Theorem II).31 With

31For instance, in Example 2 sincere behavior σ̂ would be efficient if signal precisions were, e.g.,
(p1, ..., p5) = (.9, .6, .6, .6, .6). Similarly, in Example 3, sincere behavior would be efficient if, e.g.,
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our experimental design we purposefully keep expertise constant among experts to
observe unbalanced power directly in the network structure. Moreover, the assump-
tion that non-experts do not receive a signal is based on the insight that if the signal
quality of some agents is too low, then their signal should be ignored. For instance,
in an example with five experts with signal quality p = 0.9 and four non-experts
with signal quality q = 0.55, the efficient strategy profiles always implement the
signal that has been received by a majority of experts, ignoring the non-experts’
signals.

We have analyzed preplay communication in a voting game of common interest.
In contrast to public communication, where information aggregation occurs in the
communication stage (Gerardi and Yariv, 2007; Goeree and Yariv, 2011), we have
studied private communication, which only admits information aggregation in the
voting stage. Both scenarios can be considered as extreme cases of more general
communication structures, which we addressed in an extension. Our analysis seems
to be the natural first step toward understanding the effects of prevote communica-
tion in even more general social networks.

signal precisions were (p1, ..., p5) = (.9, .9, .6, .6., .6). In those cases, an expert’s power is justified
by her expertise.
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A Appendix: Tables

Table 1a. Observations
treatment groups experts non-experts senders receivers

empty 210 1,050 840 0 0
strongly balanced 210 1,050 840 840 840
weakly balanced 210 1,050 840 420 840
star 210 1,050 840 210 840
Total 840 4,200 3,360 1,470 2,520

Table 1a: Number of observations in Study I. Senders are experts who are in a network position
with an audience. Non-experts are receivers if they are linked to a sender.

Table 1b. Observations
treatment groups experts non-experts senders receivers

empty 200 600 800 0 0
weakly balanced 200 600 800 347 800
unbalanced 200 600 800 178 800
star 200 600 800 83 800
Total 800 2,400 3,200 608 2,400

Table 1b: Number of observations in Study II. Senders are experts who are in a network position
with an audience. The number of partisan senders is not displayed. Non-experts are receivers if
they are linked to a sender (expert or partisan).
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Table 2a. Behavior of non-experts
vote message vote opposite vote uninformed sincere

empty - - 265 575
(N = 840) - - 31.6% 68.5%
s. balanced 577 52 29 664
(N = 840) 79.7% 7.2% 25.0% 79.1%
w. balanced 480 37 49 609
(N = 840) 72.5% 5.6% 27.5% 72.5%
star 286 66 108 470
(N = 840) 52.2% 12.0% 37.0% 56.0%
Total 1,343 155 451 2,318
(N = 3, 360) 69.4% 8.0% 31.6% 69.0%

Table 2a: Behavior of non-experts by treatment in Study I. In the empty network all non-experts
are uninformed. In the other networks this happens only if an expert sender chose the empty
message. The action ‘vote message’ means that A (B) is voted after message A (B) has been
received. In addition to the displayed categories ‘vote message’ and ‘vote opposite’ non-experts
who received message A or B could abstain. In addition to the displayed category ‘vote uninformed’
non-experts who received an empty message could abstain. Non-experts with no message or an
empty message are sincere if they abstain. Non-experts with message A (B) are sincere if they
vote A (B).

Table 2b. Behavior of non-experts
vote message vote opposite vote uninformed sincere

empty - - 220 580
(N = 800) - - 27.5% 72.5%
weakly balanced 540 37 6 557
(N = 800) 69.5% 4.8% 26.1% 69.6%
unbalanced 417 61 11 438
(N = 800) 54.3% 7.9% 34.4% 54.8%
position 1-3 278 52 9 293

(N = 600) 48.3% 9.0% 37.5% 48.8%
position 4 139 9 2 145

(N = 200) 72.4% 4.7% 25.0% 72.5%
star 360 59 7 377
(N = 800) 46.4% 7.6% 29.2% 47.1%
Total 1,317 157 244 1,952
(N = 3, 200) 56.7% 6.76% 27.8% 61.0%

Table 2b: Behavior of non-experts by treatment (and position) in Study II. The network positions
in the unbalanced network refer to Figure 3. In the empty network all non-experts are uninformed.
In the other networks this happens only in 79 cases, where an expert sender chose the empty
message. The action ‘vote message’ means that A (B) is voted after message A (B) has been
received. In addition to the displayed categories ‘vote message’ and ‘vote opposite’ non-experts
who received message A or B could abstain. In addition to the displayed category ‘vote uninformed’
non-experts who received an empty message could abstain. Non-experts with no message or an
empty message are sincere if they abstain. Non-experts with message A (B) are sincere if they
vote A (B).
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Table 3a. Dependent variable: Following of non-experts
Logit 1 Logit 2

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

strongly balanced 0.398∗ (0.215) 0.358∗∗ (0.174)
star -0.882∗∗∗ (0.181) -0.730∗∗∗ (0.139)
Intercept 0.970∗∗∗ (0.193) 0.969∗∗∗ (0.152)
N 1,934 2,520
Log-likelihood -1133.96 -1501.53
Wald χ2

(2) 38.48 45.48

p-value Wald test 0.000 0.000
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 3a: Estimation results for Study I: Logistic regression with decision to follow message as
dependent variable. Robust standard errors in parentheses adjusted for subjects. Baseline category
is the weakly balanced network. Model 1 restricts attention to non-experts who received message
A or B. Model 2 also considers non-experts who received an empty message, for which following
means abstention. Following coincides with sincere behavior of non-experts.

Table 3b. Dependent variable: Following of non-experts
Logit 1 Logit 2

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

unbalanced -0.651∗∗∗ (0.170) -0.639∗∗∗ (0.164)
star -0.968∗∗∗ (0.193) -0.945∗∗∗ (0.186)
Intercept 0.824∗∗∗ (0.200) 0.830∗∗∗ (0.194)
N 2,321 2,400
Log-likelihood -1543.26 -1595.30
Wald χ2

(2) 25.61 25.91

p-value Wald test 0.000 0.000
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 3b: Estimation results for Study II: Logistic regression with decision to follow message as
dependent variable. Robust standard errors in parentheses adjusted for subjects. Baseline category
is the weakly balanced network. Model 1 restricts attention to non-experts who received message
A or B. Model 2 also considers non-experts who received an empty message, for which following
means abstention. Following coincides with sincere behavior of non-experts.
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Table 4a. Individual sincere behavior of non-experts by position
never always s. balanced w. balanced star

s. balanced 4.8% 57.1% 0.127 0.000
w. balanced 8.33% 46.43% 0.000
star 23.8% 29.8%
empty 19.1% 54.8% 0.033 0.545 0.032
s. balanced 1.2% 51.2% 0.008 0.000
w. balanced 0.0% 31.0% 0.000
star 1.2% 16.7%

Table 4a: Individual behavior of non-experts by position in Study I: for each individual in each
network position (she is in) there is a variable capturing the frequency of sincere actions. The
network positions refer to the upper panel of Figure 3. Column 2 and 3 report the fraction of
participants who never respectively always chose the sincere strategy in the given position. The
first block restricts attention to instances in which a non-empty message is received and thus reports
on following of non-empty vote recommendations. The second block considers all ten decisions
of each individual in each positions. In the empty network a non-expert is always uninformed.
Columns 4-6 of the table show the p-values of Wilcoxon matched-pairs signed-ranks test.

Table 4b. Individual sincere behavior of non-experts by position
never always empty w. balanced unbalanced star

w. balanced 15.0% 46.3% 0.000
unbalanced pos. 4 20.3% 60.8% 0.855 0.000
unbalanced pos. 1-3 33.8% 30.0% 0.000 0.001a 0.533
star 32.5% 25.0%
empty 17.5% 60.0% 0.572 0.001
w. balanced 11.3% 43.8% 0.000
unbalanced pos. 4 17.6% 59.5% 0.873 0.964 0.000
unbalanced pos. 1-3 22.5% 25.0% 0.003 0.000 0.001a 0.444
star 21.3% 18.8%

Table 4b: Individual behavior of non-experts by position in Study II: for each individual in each
network position (she is in) there is a variable capturing the frequency of sincere actions. The
network positions refer to the lower panel of Figure 3. Column 2 and 3 report the fraction of
participants who never respectively always chose the sincere strategy in the given position. The
first block restricts attention to instances in which a non-empty message is received and thus reports
on following of non-empty vote recommendations. The second block considers all ten decisions
of each individual in each positions. In the empty network a non-expert is always uninformed.
Columns 4-6 of the table show the p-values of Wilcoxon matched-pairs signed-ranks test. Note a:
This is the comparison between non-experts in network positions 1-3 and network position 2 in the
unbalanced treatment.
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Table 5a. Behavior of experts
vote signal vote opposite send signal send opposite sincere

empty 919 62 - - 919
(N = 1, 050) 87.5% 5.9 % - - 87.5%
strongly balanced 884 75 671 53 798
(N = 1, 050) 84.2% 7.1% 79.9% 6.3% 76.0%
weakly balanced 878 74 301 30 803
(N = 1, 050) 83.6% 7.1% 71.7% 7.1% 76.5%
star 854 84 128 9 794
(N = 1, 050) 81.3% 8.0% 61.0% 4.3% 75.6%
Total 3,535 295 1,100 92 3,314
(N = 4, 200) 84.2% 7.0% 74.8% 6.3 % 78.9%

Table 5a: Behavior of experts by treatment in Study I. The action ‘vote (send) opposite’ means
vote (send message) A when signal is B and vice versa. In addition to the displayed categories
‘vote signal’ and ‘vote opposite’ experts could abstain. In addition to the displayed categories ‘send
signal’ and ‘send opposite’ experts could send an empty message. Experts without an audience
are sincere if they vote their signal. Experts with an audience are sincere if they vote their signal
and also send it.

Table 5b. Behavior of experts
vote signal vote opposite send signal send opposite sincere

empty 560 21 - - 560
(N = 600) 93.3% 3.5% - - 93.3%
weakly balanced 550 31 309 15 530
(N = 600) 91.7% 5.2% 89.1% 4.3% 88.3%
unbalanced 552 22 158 4 534
(N = 600) 92.0% 3.7% 88.8% 2.3% 89.0%
star 556 27 76 1 550
(N = 600) 92.7% 4.5% 91.6% 1.2% 91.7%
Total 2,218 101 543 20 2,174
(N = 2, 400) 92.4% 4.2% 89.3% 3.3% 90.6%

Table 5b: Behavior of experts by treatment in Study II. The action ‘vote (send) opposite’ means
vote (send message) A when signal is B and vice versa. In addition to the displayed categories
‘vote signal’ and ‘vote opposite’ experts could abstain. In addition to the displayed categories ‘send
signal’ and ‘send opposite’ experts could send an empty message. Experts without an audience
are sincere if they vote their signal. Experts with an audience are sincere if they vote their signal
and also send it.
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Table 6a. Sincere Senders
Logit 1: Send Signal Logit 2: Sincere

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

strongly balanced 0.451∗∗∗ (0.166) 0.505∗∗∗ (0.159)
star -0.483∗∗ (0.200) -0.486∗∗∗ (0.186)
Intercept 0.928∗∗∗ (0.161) 0.619∗∗∗ (0.159)
N 1,470 1,470
Log-likelihood -812.55 -884.94
Wald χ2

(2) 15.68 20.39

p-value Wald test 0.000 0.000
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 6a: Estimation results for Study I: Logistic regression sincere senders by treatment. Senders
are experts with at least one link. Dependent variable in Model 1 is ‘send signal,’ which is 1 if the
expert’s message equals her signal (and zero otherwise). Dependent variable in Model 2 is sincere
behavior, which equals 1 if sender both sends and votes her signal. Robust standard errors in
parentheses adjusted for subjects. Baseline category is the weakly balanced network.

Table 6b. Sincere Senders
Logit 1: Send Signal Logit 2: Sincere

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

unbalanced -0.029 (0.286) 0.080 (0.293)
star 0.289 (0.341) 0.506 (0.359)
Intercept 2.096∗∗∗ (0.264) 1.878∗∗∗ (0.253)
N 608 608
Log-likelihood -206.44 -226.34
Wald χ2

(2) 1.03 2.27

p-value Wald test 0.598 0.322
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 6b: Estimation results for Study II: Logistic regression sincere senders by treatment. Senders
are experts with at least one link. Dependent variable in Model 1 is ‘send signal,’ which is 1 if
the expert’s message equals her signal (and zero otherwise). Dependent variable in Model 2 is
sincere behavior, which equals 1 if sender both sends and votes her signal. Robust standard errors
in parentheses adjusted for subjects. Baseline category is the weakly balanced network. Observe
that models are not well-specified according to Wald test.
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Table 7a. Individual sincere behavior of experts by position
never always s. balanced w. balanced star

empty: pos. 1-5 1.9% 59.1% 0.161 0.450 0.000
s. balanced: pos. 5 12.6% 70.5% 0.353 0.715
w. balanced: pos. 3-5 2.9% 61.9% 0.047
star: pos. 2-5 1.9% 52.4%
s. balanced: pos. 1-4 4.8% 49.5% 0.039 0.003
w. balanced: pos. 1-2 12.5% 43.3% 0.085
star: pos. 1 31.6% 43.2%

Table 7a: Individual behavior of experts by position in Study I: for each individual in each network
position (she is in) there is a variable capturing the frequency of sincere actions. The network
positions refer to the upper panel of Figure 3. Column 2 and 3 report the fraction of participants
who never respectively always chose the sincere strategy in the given position. Non-experts are ten
times in each position. Experts are at most ten times in each position. Columns 4-6 of the table
show the p-values of Wilcoxon matched-pairs signed-ranks test. The first block compares experts
who are not senders across treatments. The second block compares experts who are senders across
treatments.

Table 7b. Individual sincere behavior of experts by position
never always empty w. balanced unbalanced star

empty pos. 1-7 0.0% 73.3% 0.755 0.157 0.485
w. balanced pos. 5-7 1.7% 78.3% 0.142 0.629
unbalanced pos. 3-7 0.0% 73.3% 0.026
star pos. 2-7 0.0% 76.7%
w. balanced pos. 1-4 1.7% 68.3% 0.334
unbalanced pos. 1 11.1% 80.0% 0.914 0.503a 0.954
unbalanced pos. 2 8.7% 87.0% 0.095 0.655
star pos. 1 10.2% 85.7%

Table 7b: Individual behavior of experts by position in Study II: for each individual in each network
position (she is in) there is a variable capturing the frequency of sincere actions. The network
positions refer to the lower panel of Figure 3. Column 2 and 3 report the fraction of participants
who never respectively always chose the sincere strategy in the given position. Participants are
at most ten times in each position. Columns 4-6 of the table show the p-values of Wilcoxon
matched-pairs signed-ranks test. The first block compares experts who are not senders across
treatments. The second block compares experts who are senders across treatments. Note a: This
is the comparison between experts in network position 1 and network position 2 in the unbalanced
treatment.

Table 8a. Fisher exact test on almost σ∗

strongly balanced weakly balanced star

empty 0.000 0.000 0.000
strongly balanced 0.135 0.000
weakly balanced 0.026

Table 8a: p-values of Fisher exact tests comparing the frequency of the “let the experts decide”
strategy profile σ∗ between two treatments in Study I. A group plays “almost” σ∗ if there is at
most one player whose strategy differs from the profile.
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Table 8b. Fisher exact test on almost σ∗

weakly balanced unbalanced star

empty 0.000 0.000 0.000
weakly balanced 0.010 0.000
unbalanced 0.048

Table 8b: p-values of Fisher exact tests comparing the frequency of the “let the experts decide”
strategy profile σ∗ between two treatments in Study II. A group plays “almost” σ∗ if there is at
most one player whose strategy differs from the profile.

Table 9a. Fisher exact test on almost σ̂
weakly balanced star

strongly balanced 0.115 0.000
weakly balanced 0.001

Table 9a: p-values of Fisher exact tests comparing the frequency of the sincere strategy profile
σ̂ between two treatments (in the empty network σ̂ cannot be played) in Study I. A group plays
“almost” σ̂ if there is at most one player whose strategy differs from the profile.

Table 9b. Fisher exact test on almost σ̂
unbalanced star

weakly balanced 0.000 0.000
unbalanced 0.321

Table 9b: p-values of Fisher exact tests comparing the frequency of the sincere strategy profile σ̂
between two treatments (in the empty network σ̂ cannot be played) in Study II. A group plays
“almost” σ̂ if there is at most one player whose strategy differs from the profile.

Table 10a. Fisher exact tests on efficiency
strongly balanced weakly balanced star

empty 0.299 0.543 0.170
strongly balanced 0.705 0.117
weakly balanced 0.429

Table 10a: p-values of Fisher exact tests comparing efficiency between two treatments in Study I.
Efficiency is 1 if majority signal wins, 0 in case of a tie, and −1 if majority signal loses.

Table 10b. Fisher exact tests on efficiency
weakly balanced unbalanced star

empty 0.323 0.022 0.002
weakly balanced 0.219 0.007
unbalanced 0.244

Table 10b: p-values of Fisher exact tests comparing efficiency of two treatments in Study II.
Efficiency is 1 if majority signal wins, 0 in case of a tie, and −1 if majority signal loses.
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Table 11a. Dependent variable: Efficiency
ologit 1 ologit 2

Variable Coeff. (Std. Err.) Coeff. (Std. Err.)

empty -0.016 (0.185)
strongly balanced 0.110 (0.265) 0.095 (0.238)
weakly balanced 0.016 (0.185)
star -0.236∗ (0.141) -0.252 (0.174)
uniform signal 3.173∗∗∗ (0.593) 3.173∗∗∗ (0.593)
almost uniform signal 1.579∗∗∗ (0.367) 1.579∗∗∗ (0.367)
Intercept cut 1 -1.296 (0.110) -1.311 (0.152)
Intercept cut 2 -0.492 (0.121) -0.508 (0.126)
N 840 840
Log-likelihood -580.612 -580.612
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 11a: Estimation results for Study I: Ordered logit. Efficiency is 1 if majority signal wins, 0
in case of a tie, and −1 if majority signal loses. Robust standard errors in parentheses adjusted
for sessions. Less clusters than parameters simply mean that joint significance (Wald test) cannot
be tested. The first model uses the empty network as baseline category. The second model uses
the weakly balanced network as baseline category.

Table 11b. Dependent variable: Efficiency
ologit 1 ologit 2

Variable Coeff. (Std. Err.) Coeff. (Std. Err.)

empty -0.059 (0.140)
weakly balanced 0.059 (0.140)
unbalanced -0.276∗ (0.164) -0.335 (0.210)
star -0.711∗∗ (0.319) -0.770∗∗∗ (0.243)
uniform signal 2.027∗∗∗ (0.135) 2.027∗∗∗ (0.135)
Intercept cut 1 -1.611 (0.208) -1.670 (0.251)
Intercept cut 2 -0.572 (0.122) -0.631 (0.179)
N 800 800
Log-likelihood -513.262 -513.262
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 11b: Estimation results for Study II: Ordered logit. Efficiency is 1 if majority signal wins,
0 in case of a tie, and −1 if majority signal loses. Robust standard errors in parentheses adjusted
for sessions. Less clusters than parameters simply mean that joint significance (Wald test) cannot
be tested. The first model uses the empty network as baseline category. The second model uses
the weakly balanced network as baseline category.
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Table 12a. Expected Payoff EP and Success
treatment EP Success

empty 64.2 62.9%
strongly balanced 64.2 65.7%
weakly balanced 63.7 60.5%
star 60.8 60.5%
Total 63.2 62.4%

Table 12a: Expected Payoff EP and Success in Study I. EP can be interpreted as the likelihood in
percent that the group decision matches the true state. Success is the fraction of group decisions
which were actually correct. If we consider reasonable values of EP to lie between the EP of
a dictator who is randomly chosen from M and the EP of an efficient strategy profile, then the
reasonable range is [60, 68.3].

Table 12b. Expected Payoff EP and Success
treatment EP Success

empty 79.5 70.5%
w.balanced 81.0 81.5%
unbalanced 77.4 78.0%
star 72.6 70.5%
Total 77.6 75.1%

Table 12b: Expected Payoff EP and Success in Study II. EP can be interpreted as the likelihood
in percent that the group decision matches the true state. Success is the fraction of group decisions
which were actually correct. If we consider reasonable values of EP to lie between the EP of a
dictator who is randomly chosen from M and the EP of an efficient strategy profile, then the
reasonable range is [62.9, 89.6].

Table 13a. Dependent variable: Expected payoff EP
OLS 1 OLS 2

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

empty -0.231 (0.644)
strongly balanced -0.110 (1.489) -0.341 (1.196)
weakly balanced 0.231 (0.644)
star -1.356∗ (0.646) -1.587∗ (0.678)
uniform signal 33.309∗∗∗ (0.506) 33.309∗∗∗ (0.506)
almost uniform signal 18.202∗∗∗ (1.680) 18.202∗∗∗ (1.680)
Intercept 54.272∗∗∗ (0.567) 54.503∗∗∗ (0.424)
N 840 840
R2 0.534 0.534
p-value F-test 0.000 0.000
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 13a: Estimation results for Study I: OLS with expected payoff EP as dependent variable.
Robust standard errors in parentheses adjusted for sessions. The first model uses the empty
network as baseline category. The second model uses the weakly balanced network as baseline
category.
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Table 13b. Dependent variable: Expected payoff EP
OLS 1 OLS 2

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

empty 0.754 (0.796)
weakly balanced -0.754 (0.796)
unbalanced -3.528∗∗ (0.997) -2.773∗∗ (0.915)
star -7.703∗ (2.847) -6.949∗∗ (2.219)
uniform signal 31.214∗∗∗ (0.844) 31.214∗∗∗ (0.844)
Intercept 64.411∗∗∗ (1.312) 63.656∗∗∗ (1.625)
N 800 800
R2 0.347 0.347
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 13b: Estimation results for Study II: OLS with expected payoff EP as dependent variable.
Robust standard errors in parentheses adjusted for sessions. The first model uses the empty
network as baseline category. The second model uses the weakly balanced network as baseline
category.

Table 14a. Avoidability of inefficiency
vote difference “wrong” experts “wrong” non-experts preventable

empty 0.74 2.26 1.11 51.9%
(N = 54)
s. balanced 1.09 2.19 2.04 72.3%
(N = 47)
w. balanced 1.24 2.22 1.87 59.3%
(N = 54)
star 1.41 2.15 2.05 60.6%
(N = 66)
Total 1.14 2.20 1.77 60.6%
(N = 221)

Table 14a: Avoidability of inefficiency in Study I. The variable ‘vote difference’ refers to the
absolute difference of the number of votes. A vote difference of, e.g., 2 means that the minority
signal has received two more votes than the majority signal; and a vote difference of 0 means that
a tie has occurred. The label “wrong” refers to an agent who voted for the minority signal. The
table reports the mean of these variables over all inefficient cases, i.e., for all groups where the
majority signal did not receive a majority of votes. Column 5 ‘preventable’ reports the fraction of
groups that would have avoided an inefficient outcome if all “wrong” non-experts abstained.
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Table 14b. Avoidability of inefficiency
vote difference “wrong” experts “wrong” non-experts preventable

empty 0.33 1.09 1.13 76.1%
(N = 46)
w. balanced 0.56 1.13 2.05 87.2%
(N = 39)
unbalanced 0.75 0.98 2.06 91.7%
(N = 48)
star 0.95 0.90 2.30 87.3%
(N = 63)
Total 0.68 1.01 1.92 85.7%
(N = 196)

Table 14b: Extent of inefficiency in Study II. The variable ‘vote difference’ refers to the absolute
difference of the number of votes. A vote difference of, e.g., 2 means that the minority signal
has received two more votes than the majority signal; and a vote difference of 0 means that a tie
has occurred. The label “wrong” refers to an agent who voted for the minority signal. The table
reports the mean of these variables over all inefficient cases, i.e., for all groups where the majority
signal did not receive a majority of votes. Column 5 ‘preventable’ reports the fraction of groups
that would have avoided an inefficient outcome if all “wrong” non-experts abstained.



B Proofs

To prove Prop. 2 we first state a helpful lemma which makes use of the the following
definition.

Definition B.1. (Representation): For a social network g and a strategy profile σ
we say that the agents in M (i.e., the experts) represent the society if the outcome of
voting among the agents in M coincides with the outcome of voting in the society N∪
M for any realization of the draws of nature. We call a network g representative
under strategy profile σ if the agents in M represent the society.

Lemma B.1. Let m =
∣∣M ∣∣ be odd and m ≥ 5. The following statements about a

network g are equivalent:

1. g is such that sincere voting σ̂ is efficient.

2. g is representative under sincere voting σ̂.

3. g is strongly balanced.

Proof. Suppose g is such that σ̂ is efficient. Then for any draw of nature the majority
signal must be implemented. Restricting attention to votes within M , indeed for
any draw of nature the majority signal receives a majority of votes under σ̂ since
each expert simply votes her signal. Thus, (1.) implies (2.).

To show that (2.) implies (3.) denote the number of links l :=
∑m

j=1 dj and let
the degree distribution be ordered in decreasing order as in Definition 2. Consider
a draw of nature in which the outcome of voting restricted to M is A with one vote
more than B. If all experts with signal B happen to be the most powerful experts,

the number of votes for B is:
∑m−1

2
j=1 (1 + dj). By representativeness, A must be the

outcome among all voters. Thus, the number of votes for B must be smaller than
m+l

2
(which is half of the total number of votes). Strong balancedness follows from

a simple rearrangement of this condition:

m−1
2∑
j=1

(1 + dj) <
m+ l

2
(B.1)

d1 +

m−1
2∑
j=2

dj <
1

2
+
l

2
(B.2)

d1 +

m−1
2∑
j=2

dj ≤
l

2
(B.3)

The last inequality holds true because we have a sum of integers on the left-hand
side (LHS) (such that “+1

2
” can be omitted when changing to a weak inequality).

It remains to show that (3.) implies (1.), i.e., in strongly balanced networks the
majority signal is always implemented under σ̂. Without loss of generality let A be
the majority signal of some draw of nature. Since all experts communicate their
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signal, the number of votes for B is smaller or equal to
∑m−1

2
j=1 (1 + dj) (which is the

number of votes of the most powerful minority). If g is strongly balanced, this is
the minority of votes (see inequality B.1) such that the majority signal A wins.

Proof of Proposition 2

The efficiency statement in Prop. 2 is the equivalence of statements (1.) and
(3.) of Lemma B.1 and has been shown in its proof. The sufficiency of strong
balancedness for σ̂ to be an equilibrium follows from its efficiency. By deviating
from this strategy profile, expected utility can only be reduced.

It remains to show that weak balancedness is a necessary condition for σ̂ to be
an equilibrium; or there must be an agent that is never pivotal under σ̂.

Suppose that all agents can be pivotal under σ̂. Let i be a non-expert listening to
a sender with maximal degree d1. If i is pivotal under σ̂, the number of votes for i’s
message, say A, is m+l+1

2
such that A wins by one vote (because i can only deviate

by abstaining or voting B and recall that m is odd and l is even). A number d1 + 1
of these votes are due to i′s sender. All remaining votes for A can also be partitioned
such that each vote corresponds to one agent in M . The maximal number of agents
in M for this purpose is attained when the least powerful agents in M (besides i’s
sender) vote for A. If even this maximal number of agents in M (who vote for A) is
less than or equal to m−1

2
, then A is the minority signal whenever i is pivotal. This

is true if the number of votes under σ̂ that correspond to i’s sender and the m−3
2

“weakest” members of M is already equal or larger than m+l+1
2

what is required by
pivotality. This is incorporated in the following inequality

d1 + 1 +
m∑

k=m+5
2

(dk + 1) ≥ m+ l + 1

2
, (B.4)

which simplifies as follows:

d1 +
m∑

k=m+5
2

dk +
m− 1

2
≥ l

2
+
m+ 1

2
(B.5)

d1 +
m∑

k=m+5
2

dk ≥
l

2
+ 1 (B.6)

d1 +
m∑

k=m+5
2

dk >
l

2
. (B.7)

Since these conditions are sufficient for a profitable deviation of i, the converse
condition is necessary for σ̂ to be an equilibrium:

d1 +
m∑

k=m+5
2

dk ≤
l

2
. (B.8)
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Proof of Corollary 1

We first show that efficiency of σ̂ is equivalent to equal power of experts in the
corresponding weighted majority game (M,υ). A pair of players j, k ∈ M is called
symmetric if ∀S ⊆M \{j, k} we have υ(S∪{j}) = υ(S∪{j}). A pair of players has
the same Banzhaf index βj(υ) = βk(υ), respectively the same Shapley-Shubik index
φj(υ) = φk(υ), if and only if they are symmetric (e.g., Matsui and Matsui, 2000).

Suppose g is strongly balanced or equivalently that σ̂ is efficient (Lemma B.1).
Then, the decision of the group always coincides with the majority signal. For the
corresponding weighted majority game this means that a coalition S ⊆M is winning
if and only if |S| > m

2
. Hence, every pair of players in this game is symmetric.

Consequently, all players are equally powerful. (More precisely, βj(υ) = 1
2m−1

(
m−1
m−1

2

)
and φj(υ) = 1

m
for all j ∈M .)

Now, suppose that power of each agent is equal, i.e., βj(υ) = βk(υ) for all
j, k ∈M . Then all pairs of players are symmetric. This is equivalent to the existence
of a positive integer k such that υ(S) = 1 if and only if |S| ≥ k (Matsui and Matsui,
2000, Theorem 6). Clearly, in a weighted majority game with an odd number of
players and quota one half of all weights, k = m+1

2
.32 Thus, a coalition S is winning

if and only if |S| ≥ m+1
2

, which means that the majority of experts determine the
outcome. This corresponds to efficiency of σ̂ (and to strong balancedness). Hence,
σ̂ is an equilibrium.

It remains to show that σ̂ is only an equilibrium if (b) the coalition consisting
of the most powerful expert and the m−3

2
least powerful experts is not winning in

(M,υ), or there must be an agent that is never pivotal under σ̂. There might
be multiple ways to rank experts according to power (because several experts can
attain the same Banzhaf index or the same Shapley-Shubik index). We show that the
statement holds for any of those rankings. In particular, we show (for any ranking
of experts according to power) that weak balancedness implies the condition (b)
above. The result then follows from Proposition 2.

As in Definition 2, order the degree distribution in decreasing order (d1, d2, ..., dm)
such that dj ≥ dj+1 and relabel the experts accordinglyM = {j1, j2, ..., jm}. Suppose
that weak balancedness is satisfied, i.e., d1 +

∑m
k=m+5

2
dk ≤ l

2
. Adding m−1

2
on both

sides yields

d1 + 1 +
m∑

k=m+5
2

(dk + 1) ≤ m+ l − 1

2
<
m+ l

2
.

Hence, v(M̃) = 0 for M̃ := {j1, jm+5
2
, jm+7

2
, ..., jm}.

Now, let r : M → {1, 2, ...,m} be some ranking of the experts according to power
such that βj(υ) > βk(υ) implies r(j) < r(k); or likewise, φj(υ) > φk(υ) implies
r(j) < r(k). Let M

′
:= {r−1(1), r−1(m+5

2
), r−1(m+7

2
), ..., r−1(m)}, be the coalition

32Suppose k < m
2 and consider a coalition S of size k. Then υ(S) = 1 because |S| ≥ k and

υ(M \S) = 1 because |M \S| = m− k ≥ k. Thus, the game is not proper, i.e., there is a coalition
S such that υ(S) = 1 and υ(M \ S) = 1, which is a contradiction in a weighted majority game
(with quota one half of all weights). Hence, k ≥ m

2 . Suppose k > m+1
2 and consider a coalition S

of size k = m+1
2 . Then υ(S) = 0 because |S| < k and υ(M \ S) = 0 because |M \ S| = m−1

2 < k.
Again, a contradiction. Hence, k = m+1

2 .

42



of the most powerful expert and the m−3
2

least powerful experts according to the

ranking r. We show that weak balancedness, i.e., v(M̃) = 0, implies v(M ′) = 0.33

If r−1(1) /∈ M̃ , replace j1 by r−1(1) in the set M̃ and call the resulting set M ′
0.

Since d1 ≥ dr−1(1), v(M̃) = 0 implies v(M ′
0) = 0. Now, we compare the set

M ′
0 = {r−1(1), jm+5

2
, jm+7

2
, ..., jm}

with the set

M ′ = {r−1(1), r−1(
m+ 5

2
), r−1(

m+ 7

2
), ..., r−1(m)}.

First, note that |M ′ \M ′
0| = |M ′

0 \M ′| and let t := |M ′ \M ′
0|. If t = 0, the two sets,

M ′ and M ′
0, coincide and we are done. Otherwise, consider some j ∈ M ′

0 \M ′ and
some k ∈ M ′ \M ′

0. j ∈ M ′
0 and k /∈ M ′

0 means that dk > dj, which implies that
βk(υ) ≥ βj(υ). On the other hand, k ∈ M ′ and j /∈ M ′ means that r(j) < r(k),
which implies that βj(υ) ≥ βk(υ). Together, we have βj(υ) = βk(υ), which means
that j and k are symmetric in (M,υ). Replace j by k in the set M ′

0 and call the newly
formed set M ′

1. If t = 1 we are done. Otherwise, take some other j ∈ M ′
0 \M ′ and

some other k ∈M ′ \M ′
0. Replace j by k in the set M ′

0 and call the newly formed set
M ′

2. Repeat this procedure t times to receive M ′
t = M ′. Since in each step, we have

replaced a player with a symmetric player, the value of the coalition, i.e., whether it
is winning or not, has not changed. Hence, v(M ′

0) = v(M ′
1) = ... = v(M ′

t) = v(M ′).
Recall that weak balancedness means v(M̃) = 0 and by construction this im-

plies that v(M ′
0) = 0. In turn, this implies v(M ′) = 0, which is condition (b) of

Corollary 1.

Proof of Proposition 3

We show existence of inefficient strategy profiles with the network introduced
in Example 3. This network violates strong balancedness such that by Prop. 2 the
sincere strategy profile σ̂ is inefficient. To demonstrate that σ̂ is an equilibrium we
show that there is no profitable deviation for any player. We distinguish between
the non-experts, the experts with degree zero, and the experts with degree two.

Non-experts. Under σ̂, non-expert i ∈ N is pivotal if and only if the votes of all
others would lead to a tie (4:4) because vote differences of others are even numbers.
Moreover, in this example a tie of all others is only reached under σ̂ if signals of
the “other” experts (the ones not linked to i) form a tie as well (2:2). In particular,
it must be the case that the expert with an audience has received the same signal
as exactly one expert without an audience. Since the “own” expert (the one linked
to i) reports truthfully under σ̂, the message received by i is the majority signal
(3:2). Thus, the posterior belief that the received message indicates the correct
alternative is above 0.5, even when conditioning on pivotality. Therefore, voting
for this alternative leads to higher expected utility than abstaining (which would

33In fact, the two are equivalent, but this is not necessary to prove the corollary.
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lead to an expected utility of 0.5) and to a higher expected utility than voting the
opposite. Thus, a non-expert cannot improve upon σ̂i, which prescribes to vote the
message.

Experts without an audience. Under σ̂, expert j ∈ M with degree dj = 0
is pivotal if and only if the votes of all others would lead to a tie (4:4) because
vote differences of others are even numbers. In this example, a tie of all others is
only reached under σ̂ if signals of the “other” experts form a tie as well (2:2). (In
particular, it must be the case that each signal has been received exactly by one
out of two experts with an audience and by one out of two other experts without
an audience.) Thus, the own signal is the majority signal (3:2). Now, for the same
reason as for non-experts above, voting for this alternative leads to highest expected
utility. Hence, there is no profitable deviation from σ̂j for an expert without an
audience.

Experts with an audience. Consider an expert j ∈ M of degree dj = 2. There
are 80 ways in which this expert can deviate from the sincere strategy profile σ̂ since
experts with an audience can choose both voting actions and messages as a function
of their signal (see proof of Prop. C.5 for why we have 81 strategies). A deviation
only affects the outcome if the signal that j has received wins under σ̂, but not when
j deviates. W.l.o.g. assume that expert j has received signal A. Then the outcomes
(#A : #B) that expert j can overturn are 7:2, 6:3, and 5:4 (i.e., y = 5, 3, 1). We
proceed by showing for each of these outcomes that the probability that A is correct
is above 0.5 such that there is no incentive to deviate from σ̂. The outcome 7:2
with j receiving A is reached under σ̂ only if signals were 3:2 in favor of A. The
same holds true for the outcome 5:4. Thus, overruling these outcomes is decreasing
expected utility. Finally, the outcome 6:3 can be based on two situations. Either
signals are 4:1 and the other expert with an audience has received signal B (while
all experts without an audience have also received signal A); or signals are 2:3 and
both experts with an audience have received signal A (while all others have received
signal B).

Using the probabilities of these two events, we observe that A is more likely to
be true than B, given that j has received signal A and the outcome is 6:3, if and
only if the following inequality holds:

5p4(1− p)4

5
∗ 1

4
+ 10p2(1− p)3 2

5
∗ 1

4
≥ 5p(1− p)4 4

5
∗ 1

4
+ 10p3(1− p)2 2

5
∗ 1

4
.

The inequality compares the probability that A is true (when signals are 4:1 and
2:3) on the LHS with the probability that B is true (when signals are 4:1 and 2:3)
on the right-hand side, given that j has received signal A and the outcome is 6:3.
The inequality simplifies to

p4(1− p)− p3(1− p)2 ≥ p(1− p)4 − p2(1− p)3,

which is true (since the LHS is positive and the RHS is negative for p > 0.5). Hence,
any outcome that an expert with an audience can overturn in this example is more
likely to match the true state than the alternative.
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Therefore, there cannot be any profitable deviation from σ̂.

Proof of Proposition 4

We first show that σ̂ is efficient if and only if property (a) is satisfied. Since
“efficiency implies equilibrium” (because every player’s expected utility is maximal),
this will demonstrate that condition (a) is sufficient for σ̂ to be an equilibrium.
Finally, we turn to the necessary condition (b).

Efficiency if (a). We show sufficiency (if (a) is satisfied, then σ̂ is efficient) by
demonstrating that for inefficient networks condition (a) is violated.

Suppose σ̂ is inefficient. Then there is a draw of nature s.t. A is the majority
signal, but does not receive more votes than B.

Consider such a draw of nature. Let M̃ be the set of experts who have received
signal B and denote its size by m̃. Because A is the majority signal, m̃ ≤ m−1

2
. Let

Ñ be the set of non-experts who vote B under this draw of nature and denote its
size by ñ. Hence, the number of votes for B is m̃+ ñ. The number of votes for A is
m− m̃ (experts) plus the number of non-experts n−(M̃) who have strictly less links
into M̃ than into M \ M̃ . By assumption B receives at least as many votes as A,
i.e.,

m̃+ ñ ≥ (m− m̃) + n−(M̃). (B.9)

Now, if m̃ = m−1
2

, let M ′ := M̃ ; otherwise add m−1
2
− m̃ arbitrary members of

M \ M̃ to M̃ and call the new set M ′. Note that when expanding the set from
M̃ to M ′ all non-experts i ∈ Ñ who already had more links into M̃ than into the
complement also have more links into M ′ than its complement. Thus, we have
n+ := n+(M ′) ≥ n+(M̃) = ñ. Similarly, we have n− := n−(M ′) ≤ n−(M̃) because
M ′ is a weak superset of M̃ . When using these two inequalities together with
m̃ ≤ m′, Eq. B.9 implies

m′ + n+ ≥ (m−m′) + n−. (B.10)

Using m′ = m−1
2

, Eq. B.10 simplifies to

2m′ + n+ ≥ m+ n−

(m− 1) + n+ ≥ m+ n−

n+ ≥ n− + 1

n+ > n−,

which is a violation of condition (a). Thus, when σ̂ is inefficient, condition (a) is
violated (which means that if condition (a) is satisfied, σ̂ must be efficient). Since
in an efficient strategy profile any players’ expected utility is maximal, condition (a)
implies that σ̂ is an equilibrium.

Efficiency only if (a). We show necessity (σ̂ is efficient only if condition (a)
is satisfied) by demonstrating that a violation of condition (a) implies inefficiency.
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Suppose that (a) is violated. Then there is a set M ′ of size m′ = m−1
2

with n+ > n−.
This implies

n+ > n− (B.11)

n+ +
m− 1

2
> n− +

m− 1

2
(B.12)

n+ +
m− 1

2
≥ n− +

m− 1

2
+ 1 (B.13)

n+ +m′ ≥ n− + (m−m′). (B.14)

Now, consider a draw of nature that gives signal B to expert j if and only if
j ∈ M ′. Under σ̂, all experts j ∈ M ′ vote for B and all experts j ∈ M \M ′ vote
for A. Since each non-expert i ∈ N+ has strictly more links into M ′ than into
M \M ′, B is i’s majority message. Hence, all non-experts i ∈ N+ vote for B, while
all non-experts i ∈ N− vote for A. (The non-experts i ∈ N0 have either zero links
di = 0 or the same number of links di

2
into M ′ as into M \M ′ and thus abstain.) The

number of votes for B is hence m′ + n+, i.e., the LHS of Eq. B.14, and the number
of A votes is (m − m′) + n−, i.e., the RHS of Eq. B.14. By Eq. B.14 alternative
B receives at least as many votes as A. However, by assumption m′ = m−1

2
< m

2
.

Thus, B is the minority signal, but it is implemented with positive probability. This
is inefficient. We have shown that a violation of condition (a) implies inefficiency of
σ̂, which proves that if σ̂ is efficient, then condition (a) must be satisfied.

Equilibrium only if (b). Let the degree of each non-expert be odd and larger
than zero. Suppose that condition (b) is violated. Then there is a non-expert i ∈ N
and a set of experts M ′ ⊆M(i) such that ∀M ′′ ⊆M \M(i) with m′+m′′+n+(M ′∪
M ′′) = m+n+1

2
, we have m′ +m′′ < m

2
.

Consider a draw of nature such that an expert j ∈ M(i) receives signal A if
and only if j ∈ M ′. Denote by M ′′ ⊆ M \M(i) the other experts with signal A.
Under σ̂ all experts and non-experts participate in the vote (since the non-experts
have an odd degree by assumption). Non-expert i is hence pivotal if and only if
m′ + m′′ + n+(M ′ ∪M ′′) = m+n+1

2
. Since for any potential set M ′′ that renders i

pivotal, it holds by assumption that m′+m′′ < m
2

, i.e., i votes for the minority signal
under σ̂ whenever his vote is decisive. By abstaining (or by voting the opposite) in
the case of observing exactly experts j ∈ M ′ send the same message, non-expert i
can improve upon σ̂i, given that all others play according to σ̂−i.
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This supplementary online material belongs to the paper “The Swing Voter’s Curse
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C.2 A Necessary and Sufficient Condition

C.3 Partisans

D Instructions

C Supplementary Mathematical Appendix

C.1 Equilibrium Analysis of Examples 1, 2, and 3

We define the concept of a transmission network g∗ ⊆ g as follows: A link g∗ij
between non-expert i ∈ N and expert j ∈ M exists if and only if j truthfully
transmits her signal to i. Truthful transmission requires that the expert sends
a message m∗j ∈ {A,B, ∅} whenever her signal is A and sends a different message

m∗
′
j ∈ {A,B, ∅} ,m∗

′
j 6= m∗j whenever her signal is B; and that (2) the posterior belief

of the non-expert, conditional on the message received, equals the posterior belief of
the expert, conditional on her signal. In equilibrium, (1) implies (2). A transmission
network g∗ arises on the communication stage on the equilibrium path. Note that
different communication strategies support a given g∗, e.g., sending message A after
signal A and message B after signal B transmits the same information as sending
message B after signal A and message A after signal B. Since we are only interested
in the information transmission (and voting behavior) in equilibrium and not in
the precise “language” that transmits the information, we will not fully specify the
communication strategies but refer to the resulting transmission network instead.
Hence, we can drop any explicit reference to the full strategy profiles σ. Let v denote
the strategy profile of all players on the voting stage. Then, any type of equilibrium
of our examples 1,2, and 3 can be fully characterized by g∗ and v. Note that any
two equilibria that are characterized by a given g∗ and v are identical with respect
to all equilibrium beliefs, voting strategies and outcomes.34

Let m̃i (sj) ∈ {A,B, ∅} denote the meaning that non-expert i ascribes to message
m∗j if g∗ij = 1 for some expert j who received signal sj ∈ {A,B}: i believes that the
expert’s voting recommendation is m̃i, with m̃i = A indicating a recommendation
to vote for A, m̃i = B indicating a recommendation to vote for B, and m̃i =
B indicating a recommendation to abstain. Slightly abusing notation, we write

34We do not explicitly specify off-equilibrium beliefs; hence the equilibria of one type may differ
in those. However, equating the off-equilibrium belief with the priors for any non-expert who,
surprisingly, finds himself uninformed after an expert’s deviation from g∗ on the communication
stage supports all selected equilibria.
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vi (m̃i) ∈ {A,B, ∅} to denote the voting strategy of non-expert i with g∗ij = 1 for
some j. Analogously, the voting strategy of a non-expert i with g∗ij = 0 for all j ∈M
is denoted by vi (∅) ∈ {A,B, ∅}. Moreover, let s̃l denote either signal sl ∈ {A,B}
received by l ∈ M or the meaning m̃l of the message received by l ∈ N . Then, we
write vl (s̃l) ∈ {A,B, ∅} to denote the voting strategy of l ∈M ∪N .

We now define the following four selection criteria that guide our equilibrium
analysis:

1. Purity: The equilibrium is in pure strategies.

2. Symmetry: Any two experts, as well as any two non-experts, with the same
degree in the transmission network apply identical strategies.

3. Monotonicity: If vi
(
m̃i
′) = m̃i for some m̃i

′ ∈ {A,B, ∅}, then vi (m̃i) = m̃i;
and if m̃i

(
s′j
)

= sj for some s′j ∈ {A,B}, then m̃i (sj) = sj.

4. Neutrality: (i) Unbiased voting: Either vl (s̃l) = s̃l for all s̃l ∈ {A,B} or
vl (s̃l) 6= s̃l for all s̃l ∈ {A,B}; and vi (∅) = ∅. (ii) Unbiased information
transmission: Either m̃i (sj) = sj for all sj ∈ {A,B}, or m̃i (sj) = ∅ (i.e.,
g∗ij = 0) for all sj ∈ {A,B}.

We now define a voting strategy profile v for any transmission network g∗ as
follows: Order the experts according to their degrees d∗j in g∗ in decreasing order,
indicate the experts with the highest degree in the transmission network by the index
δ∗1 and the experts with the second-highest degree with the index δ∗2, etc. Indicate
the lowest degree of experts by index δ∗M and the lowest possible degree of non-
experts by index δ∗N = 0.35 Order the non-experts according to their degrees d∗i in
decreasing order, indicate the experts with degree one in the transmission network
by the index 1 and the non-experts with degree zero with the index 0. Then, a
strategy profile on the voting stage is given by

s =

{
vδ1 (A) , vδ1 (B) ; vδ2 (A) , vδ2 (B) ; ..., vδM (A) , vδM (B) ;

v1 (A) , v1 (B) , v1 (∅) ; v0 (A) , v0 (B) , v0 (∅)

}
.

C.1.1 Example 1

In Example 1, we have two possibilities. Either the transmission network is empty
due to a babbling equilibrium. Then, the strategy profiles conforming to our se-
lection criteria imply that a number x ∈ {1, 3, 5} of experts vote their signal while
all other players abstain. These strategy profiles are all equilibria. They obviously
include a “let the experts decide equilibrium (LTED)”; all other equilibria might be
called “let some experts decide (LSED)” equilibria. The second possibility is that
r ∈ {1, 2, 3, 4} experts transmit their signal to the non-expert linked to them, while
the remaining experts do not. (Note that we fully characterize g∗ by r in this exam-
ple.) Hence, there are two possible types of experts and two types of non-experts:

35The lowest degree of non-experts is zero off equilibrium, even though it might be one on the
equilibrium path.
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those with degree d∗l = 1 and those with d∗l = 0. Hence, the strategy profiles on the
voting stage are of the form

v = {v1 (A) , v1 (B) ; v2 (A) , v2 (B) ; v1 (A) , v1 (B) , v1 (∅) ; v0 (A) , v0 (B) , v0 (∅)} .

The strategy profiles on the voting stage that conform to our selection criteria Purity,
Symmetry, Monotonicity, and Neutrality are as follows:

v1 = {A,B;A,B;A,B, ∅; ∅} ,
v2 = {A,B;A,B; ∅, ∅, ∅; ∅} ,
v3 = {A,B; ∅, ∅;A,B, ∅; ∅} ,
v4 = {A,B; ∅, ∅; ∅, ∅, ∅; ∅} ,
v5 = {∅, ∅;A,B;A,B, ∅; ∅} ,
v6 = {∅, ∅;A,B; ∅, ∅, ∅; ∅} ,
v7 = {∅, ∅; ∅, ∅;A,B, ∅; ∅} , and
v8 = {∅, ∅; ∅, ∅; ∅, ∅, ∅; ∅} .
Checking deviation incentives for all types of players and all strategy profiles on

both the communication and the voting stage reveals the following result that we
state without proof.36

Proposition C.1. Strategy profile v1 and r ∈ {3, 4} are (sincere) equilibria; v2

and r ∈ {1, 2, 3, 4} are (“let the experts decide”) equilibria; v3 and r ∈ {1, 3} are
equilibria (with sincere voting and expert abstention); v4 and r ∈ {1, 3} are (“let
some experts decide”) equilibria; v5 and r ∈ {1, 2, 3, 4} are (delegation) equilibria
and outcome-equivalent to σ∗; v6 and r ∈ {2, 4} are (“let some experts decide”)
equilibria; v7 and r ∈ {1, 3} are (delegation) equilibria.

The equilibria characterized in the above proposition are also depicted in Fig-
ure 10.

C.1.2 Example 2

Again, we have two possibilities. Either the transmission network is empty due to a
babbling equilibrium and the same kind of equilibria exist as specified above for this
case. The second possibility is that the center of the star (expert 1) transmits her
signal to all non-experts. We now consider this second possibility and refer to the
resulting transmission network as g∗2. The strategy profiles on the voting stage that
conform to our selection criteria Purity, Symmetry, Monotonicity, and Neutrality
are as follows:

v1 = {A,B;A,B;A,B, ∅} ,
v2 = {A,B;A,B; ∅, ∅, ∅} ,
v3 = {A,B; ∅, ∅;A,B, ∅} ,
v4 = {A,B; ∅, ∅; ∅, ∅, ∅} ,
v5 = {∅, ∅;A,B;A,B, ∅} ,
v6 = {∅, ∅;A,B; ∅, ∅, ∅} ,

36The proof of this and all other propositions in this subsection can be obtained by the authors
upon request.
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Figure 10: All equilibria of Proposition C.1.
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Figure 11: All equilibria of Proposition C.2.

v7 = {∅, ∅; ∅, ∅;A,B, ∅} , and
v8 = {∅, ∅; ∅, ∅; ∅, ∅, ∅} .

Checking deviation incentives for all types of players and all strategy profiles on
both the communication and the voting stage reveals the following result.

Proposition C.2. Strategy profile v2 and g∗2 are (“let the experts decide”) equilibria;
v3 and g∗2 are equilibria (with sincere voting and expert abstention); v4 and g∗2 are
(“let some experts decide”) equilibria; v7 and g∗2 are (delegation) equilibria.

The equilibria characterized in the above proposition are also depicted in Fig-
ure 11.

C.1.3 Example 3

In this example we have three possibilities which reduce to two if we ignore the
empty transmission network that has been discussed above. These two possibilities
are the following: (1) Either gij = g∗ij for all i, j ∈ N ∪M ; then, the two experts
with degree two in g are symmetric, the two non-experts listening to the same expert
are symmetric, and the three experts with degree zero in g are symmetric. (2) Or
degree dj = d∗j = 2 for exactly one expert j and d∗j′ = 0 for the other expert j′ who
has degree dj′ = 1 in g. Then, this other expert j′ is symmetric to the experts with
degree zero in g; the two non-experts i with g∗ij = 1 are symmetric, and the two
non-experts with g∗ij = 0 are symmetric.

Possibility (1). Let us first consider the case in which the transmission net-
work equals the exogenous network; and let g∗31 denote this network. Then, the
profiles on the voting stage that conform to our selection criteria Purity, Symmetry,
Monotonicity, and Neutrality are as follows:

v1 = {A,B;A,B;A,B, ∅} ,
v2 = {A,B;A,B; ∅, ∅, ∅} ,
v3 = {A,B; ∅, ∅;A,B, ∅} ,
v4 = {A,B; ∅, ∅; ∅, ∅, ∅} ,
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v5 = {∅, ∅;A,B;A,B, ∅} ,
v6 = {∅, ∅;A,B; ∅, ∅, ∅} ,
v7 = {∅, ∅; ∅, ∅;A,B, ∅} , and
v8 = {∅, ∅; ∅, ∅; ∅, ∅, ∅} .

Checking deviation incentives for all types of players and all strategy profiles on
both the communication and the voting stage reveals the following result.

Proposition C.3. Strategy profile v1 and g∗31 are (sincere) equilibria; v2 and g∗31 are
(“let the experts decide”) equilibria; v5 and g∗31 are (delegation) equilibria; v6 and g∗31

are (“let some experts decide”) equilibria.

The equilibria characterized in the above proposition are also depicted in Fig-
ure 12 below.

Possibility (2). Let us now consider the case in which the transmission network
differs from the exogenous network in that only one expert transmits his signal, and
let us refer to this transmission network as g∗32. Then, the profiles on the voting
stage that conform to our selection criteria Purity, Symmetry, Monotonicity, and
Neutrality are as follows:

v1 = {A,B;A,B;A,B, ∅; ∅} ,
v2 = {A,B;A,B; ∅, ∅, ∅; ∅} ,
v3 = {A,B; ∅, ∅;A,B, ∅; ∅} ,
v4 = {A,B; ∅, ∅; ∅, ∅, ∅; ∅} ,
v5 = {∅, ∅;A,B;A,B, ∅; ∅} ,
v6 = {∅, ∅;A,B; ∅, ∅, ∅; ∅} ,
v7 = {∅, ∅; ∅, ∅;A,B, ∅; ∅} , and
v8 = {∅, ∅; ∅, ∅; ∅, ∅, ∅; ∅} .

Checking deviation incentives for all types of players and all strategy profiles on
both the communication and the voting stage reveals the following result that we
state without proof.

Proposition C.4. Strategy profile v2 and g∗32 are (“let the experts decide”) equilibria;
v3 and g∗32 are equilibria (sincere voting with some experts abstaining); v4 and g∗32

are (“let some experts decide”) equilibria; v7 and g∗32 are (delegation) equilibria.

The equilibria characterized in the above proposition are also depicted in Fig-
ure 12.
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Figure 12: All equilibria of Propositions C.3 and C.4 .

C.2 A Necessary and Sufficient Condition

Proposition C.5. Let m be odd and
∑

j dj =: l be even. The sincere strategy profile
σ̂ is an equilibrium if and only if the following conditions hold.

1. If ∃i ∈ N with di = 0, then∑
x=1,3,...,m

(
p

m+x
2 (1− p)m−x

2 − (1− p)m+x
2 p

m−x
2

)
[ν(x, 1)− ν(−x, 1)] ≥ 0, where

ν(x, 1) denotes the number of “sub-multisets” of multiset {d1 + 1, ..., dm + 1}
which are of size m+x

2
and whose elements sum up to m+l+1

2
.37

2. ∀dj ∈ {d1, ..., dm} such that dj > 0 and for all ȳ ∈ {1, 2, dj, dj + 1, dj +
2, 2dj, 2dj + 1, 2dj + 2} the following holds:

(i) if ȳ even, then
∑

x=−m+2,−m+4,...,m

(
p

m+x
2 (1− p)m−x

2 − (1− p)m+x
2 p

m−x
2

)
·
∑

y=1,3,...,ȳ−1 ν(x, y|dj) ≥ 0, and

(ii) if ȳ odd, then
∑

x=−m+2,−m+4,...,m

(
p

m+x
2 (1− p)m−x

2 − (1− p)m+x
2 p

m−x
2

)
·
[∑

y=1,3,...,ȳ−2

(
ν(x, y|dj) + 1

2
ν(x, ȳ|dj)

)]
≥ 0,

where ν(x, y|dj) denotes the number of “sub-multisets” of multiset {d1+1, ..., dm+
1} which include element dj + 1, are of size m+x

2
, and whose elements sum up

to m+l+y
2

.
37In a multiset the same numbers can occur several times. In full analogy to the notion of a

subset, we call a multiset that is contained in another multiset a “sub-multiset.”
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Proof. Part I shows necessity; part II shows sufficiency.

Part I. “ONLY IF”. Suppose σ̂ is an equilibrium. We show that the two condi-
tions of Prop. C.5 are satisfied.

1. Since σ̂ is an equilibrium, no player can beneficially deviate. In particular, if
there is a non-expert i ∈ N without a link, i.e., the qualification of the first
condition of Prop. C.5 holds, then for any deviation σ′i ∈ Σ′i = {A,B}, we have
EU(σ̂−i, σ̂i) ≥ EU(σ−i, σ

′
i). W.l.o.g. suppose that σ′i = B. Letting y denote

the outcome under σ̂ defined as the number of votes for A minus the number
of votes for B, we observe that the deviation reduces the outcome y by one
vote (because i votes for B instead of abstaining). The deviation σ′i thus only
affects the outcome if y = +1 and turns it into y′ = 0 (i.e., if A wins by one
vote under σ̂, while there is a tie under σ′ := (σ̂−i, σ

′
i)). Restricting attention

to these draws of nature, we must still have that the sincere strategy profile
leads to higher expected utility since it is an equilibrium by assumption:

EU|y=1(σ̂−i, σ̂i) ≥ EU|y=1(σ̂−i, σ
′
i) =

1

2
. (C.1)

The right-hand side (RHS) is 1
2

because this is the expected utility of a tie.
Some more notation is helpful. Let x denote a distribution of signals defined as
the number of A-signals minus the number of B-signals received by all experts.
Let P (x|A) denote the likelihood that the signals are x when the true state is
A, and likewise for P (x|B). Let P̂ (x, y) designate the probability that signals
x lead to outcome y under σ̂. Then we can rewrite inequality C.1 as

1
2

∑
x=−m,−m+2,...,m P (x|A)P̂ (x, 1)

1
2

∑
x=−m,−m+2,...,m

(
P (x|A)P̂ (x, 1) + P (x|B)P̂ (x, 1)

) ≥ 1

2
, (C.2)

since the expected utility under σ̂ when restricting attention to the draws of
nature that lead to a win of A by one vote equals the probability that A is
true under these conditions.

This simplifies to∑
x=−m,−m+2,...,m

P (x|A)P̂ (x, 1) ≥
∑

x=−m,−m+2,...,m

P (x|B)P̂ (x, 1) (C.3)

and further to ∑
x=−m,−m+2,...,m

(P (x|A)− P (x|B)) P̂ (x, 1) ≥ 0. (C.4)

Now, we split the sum into positive and negative values of x and finally rejoin
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them by using P (x|A) = P (−x|B):∑
x=−m,−m+2,...,m

(P (x|A)− P (x|B)) P̂ (x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) P̂ (x, 1)

+
∑

x=−m,−m+2,...,−1

(P (x|A)− P (x|B)) P̂ (x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) P̂ (x, 1)

+
∑

x=1,3,...,m

(P (−x|A)− P (−x|B)) P̂ (−x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) P̂ (x, 1)

+
∑

x=1,3,...,m

(P (x|B)− P (x|A)) P̂ (−x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) [P̂ (x, 1)− P̂ (−x, 1)] ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (−x|A)) [P̂ (x, 1)− P̂ (−x, 1)] ≥ 0.

Independent of the strategy profile, P (x|A) =
(

m
m+x

2

)
p

m+x
2 (1 − p)

m−x
2 . For a

draw of signals with difference x (in numbers of A-signals and B-signals), the
outcome y = +1 is reached under σ̂ if there are exactly m+l+1

2
votes for A.

All of the A-votes under σ̂ can be partitioned such that each element of the
partition is referred to an expert j with signal A. Such an expert accounts for
dj+1 votes because there is her vote and the votes of her audience. Hence, the
probability that draw of nature x leads to outcome y = +1 is determined by
the frequency with which m+x

2
experts who have received signal A account for

exactly m+l+1
2

votes. This frequency is given by the number of “sub-multisets”
of multiset {d1 + 1, ..., dm + 1} which have size m+x

2
and whose elements sum

up to m+l+1
2

.

Considering all possible allocations of m+x
2

A-signals among m experts, there
are

(
m

m+x
2

)
possibilities (which is the number of all “sub-multisets” of multiset

{d1 + 1, ..., dm + 1} of size m+x
2

). Therefore, the probability that signals x lead
to outcome y = +1 is

P̂ (x,+1) =
ν(x, 1)(

m
m+x

2

) ,
where ν(x, 1) denotes the number of “sub-multisets” of multiset {d1+1, ..., dm+
1} of size m+x

2
and sum m+l+1

2
.

Plugging the equations for P (x|A) and P̂ (x, 1) into the inequality derived
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above yields:∑
x=1,3,...,m

((
m
m+x

2

)
p

m+x
2 (1− p)

m−x
2 −

(
m
m−x

2

)
(1− p)

m+x
2 p

m−x
2

)

·

[
ν(x, 1)(

m
m+x

2

) − ν(−x, 1)(
m

m−x
2

) ] ≥ 0.

(C.5)

Since
(

m
m−x

2

)
=
(

m
m+x

2

)
, these factors cancel out such that we get

∑
x=1,3,...,m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)
[ν(x, 1)− ν(−x, 1)] ≥ 0. (C.6)

This shows that the first condition of Prop. C.5 is indeed implied by the
assumption that σ̂ is an equilibrium.

2. Let us turn to the second condition of Prop. C.5 by considering some expert
j ∈ M with dj > 0. W.l.o.g. let her signal be A. Under the sincere strategy
profile j will vote and communicate her signal, i.e., A. Abstention reduces
the outcome y by one vote, voting the opposite reduces the outcome y by
two votes. Sending no message reduces the outcome by dj votes. Sending
the opposite message reduces the outcome by 2dj votes. Therefore, there are
feasible deviations for j that reduce the outcome by a number of votes ȳ which
is in the following set {1, 2, dj, dj + 1, dj + 2, 2dj, 2dj + 1, 2dj + 2}.
By the assumption that σ̂ is an equilibrium, there is no beneficial devia-
tion for j. That is, for any deviation σ′j ∈ Σ′j, we have EU sj=A∗(σ̂−j, σ̂j) ≥
EU sj=A∗(σ̂−j, σ

′
j). Considering some deviation σ′j and the corresponding reduc-

tion of the outcome by ȳ, the implemented alternatives only differ for draws of
nature such that y > 0 and y′ ≤ 0, i.e for outcomes y such that 0 < y ≤ ȳ (be-
cause only then the reduction of support for the received signal has any effect).
Therefore, the inequality of expected utility must also hold when focusing on
these cases, i.e.

EU
sj=A∗

|0<y≤ȳ(σ̂−j, σ̂j) ≥ EU
sj=A∗

|0<y≤ȳ(σ̂−j, σ
′
j). (C.7)

(i) Suppose first that ȳ is even. Then the deviation σ′j turns all outcomes
in which A wins and 0 < y ≤ ȳ − 1 into a win of alternative B (outcomes
y = ȳ are not possible because y is odd). Therefore, the expected utility of
strategy profile σ̂ (respectively, σ′ := (σ̂−j, σ

′
j)), focusing on these cases, is the

probability that A (respectively, B) is true in these cases. Let Psj=A∗(x|ω =
A) =: PA(x|A) denote the probability that the signal distribution is x and
that expert j has received signal A when the true state is A, and similarly for
Psj=A∗(x|ω = B) =: PA(x|B). Moreover, let P̂sj=A∗(x, y) =: P̂A(x, y) be the
probability that the signals x lead to outcome y under σ̂, given that expert j
has received signal A. Note that P̂A(x, y) is not defined for x = −m because if
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all experts have received signal B it is not possible that expert j has received
signal A. Then we can rewrite inequality C.7 as∑

x=−m+2,−m+4,...,m

PA(x|A)
∑

y=1,3,...,ȳ−1

P̂A(x, y) ≥∑
x=−m+2,−m+4,...,m

PA(x|B)
∑

y=1,3,...,ȳ−1

P̂A(x, y).
(C.8)

inequality C.8 incorporates that the likelihood of A being true is greater or
equal than the likelihood of B being true given that the deviation is effective
and that expert j has received signal A.38 This inequality simplifies to∑

x=−m+2,−m+4,...,m

(PA(x|A)− PA(x|B))

·
∑

y=1,3,...,ȳ−1

P̂A(x, y) ≥ 0.
(C.9)

Independent of the strategy profile, PA(x|A) =
(

m
m+x

2

)
p

m+x
2 (1−p)m−x

2 ·
m+x

2

m
and

PA(x|B) =
(

m
m−x

2

)
p

m−x
2 (1 − p)m+x

2 ·
m+x

2

m
. The factor before the multiplication

sign is the probability that there are exactly m+x
2

A-signals. Given such a
distribution, the factor after the multiplication sign is the probability that
expert j has received signal A.

For a distribution of signals x, the outcome y is reached under σ̂ if there are
exactly m+l+y

2
votes for A. All of the A-votes under σ̂ can be partitioned

such that each element is referred to an expert k with signal A. Such an
expert accounts for dk + 1 votes (because there is her vote and the votes of
her audience). By assumption, expert j has received signal A and thus there
are at least dj + 1 votes for A under σ̂. The probability that draw of nature x
leads to outcome y is determined by the frequency that the m+x

2
experts who

have received signal A account for exactly m+l+y
2

votes. Hence, this frequency
is given by the number of “sub-multisets” of multiset {d1 + 1, ..., dm + 1}
which include element dj + 1, are of size m+x

2
, and whose elements sum up to

m+l+y
2

. Considering all possible allocations of m+x
2

A-signals among m experts

such that j also receives signal A, there are
(

m−1
m+x

2
−1

)
possibilities (which is the

number of all “sub-multisets” of multiset {d1 + 1, ..., dm + 1} which include
element dj + 1 and are of size m+x

2
). Therefore, the probability that signals x

lead to outcome y, given that expert j has received signal A, is

P̂A(x, y) =
ν(x, y|dj)(

m−1
m+x

2
−1

) ,
where ν(x, y|dj) denotes the number of “sub-multisets” of multiset {d1 +
1, ..., dm + 1} which include element dj + 1, are of size m+x

2
, and whose el-

ements sum up to m+l+y
2

.

38To get the absolute probabilities of A (respectively B) being true, we can divide the LHS
(respectively the RHS) of inequality C.8 by the sum of the LHS and the RHS.
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Hence, we can rewrite inequality C.9 as follows∑
x=−m+2,−m+4,...,m

(PA(x|A)− PA(x|B))
∑

y=1,3,...,ȳ−1

P̂A(x, y) ≥ 0

⇔
∑

x=−m+2,−m+4,...,m

(( m
m+x

2

)
p

m+x
2 (1− p)

m−x
2

m+x
2

m

−
(

m
m−x

2

)
(1− p)

m+x
2 p

m−x
2

m+x
2

m

) ∑
y=1,3,...,ȳ−1

ν(x, y|dj)( m−1
m+x

2 −1

) ≥ 0

⇔
∑

x=−m+2,−m+4,...,m

(
m

m+x
2

) m+x
2

m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)
·

∑
y=1,3,...,ȳ−1

ν(x, y|dj)( m−1
m+x

2 −1

) ≥ 0.

We have used that
(

m
m+x

2

)
=
(

m
m−x

2

)
. Finally, we observe that the factors

(
m

m+x
2

)
,

m+x
2

m
, and 1

( m−1
m+x

2 −1)
simplify to one because

( m
m+x

2
)

( m−1
m+x

2 −1)
= m

m+x
2

such that we get

∑
x=−m+2,−m+4,...,m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

) ∑
y=1,3,...,ȳ−1

ν(x, y|dj) ≥ 0

(C.10)

We have shown that inequality C.10, which coincides with condition 2(i) of
Prop. C.5, holds for any ȳ ∈ {1, 2, dj, dj + 1, dj + 2, 2dj, 2dj + 1, 2dj + 2} even.

(ii) Suppose now that ȳ is odd. (Still, we keep the assumption that some
expert j ∈ M with dj > 0 has received signal A and considers a deviation σ′j
that reduces the outcome by ȳ). Then the deviation σ′j turns all outcomes in
which A wins and 0 < y ≤ ȳ into a win of alternative B for y = 1, 3, ..., ȳ − 2
and into a tie for y = ȳ. Therefore,

EU
sj=A∗

|0<y≤ȳ(σ̂−j, σ
′
j) =∑

x=−m+2,−m+4,...,m(PA(x|B)(
∑

y=1,3,...,ȳ−2 PA(x,y)+ 1
2
P̂A(x,ȳ))+ 1

2
PA(x|A)P̂A(x,ȳ))∑

x=−m+2,−m+4,...,m(PA(x|A)+PA(x|B))
∑

y=1,3,...,ȳ P̂A(x,y)
.

The denominator is the probability that an outcome under σ̂ is reached such
that the deviation has some effect. The numerator consists of the probability
that B is true for the cases where the deviation leads to a win of alternative
B and of half the probabilities that A or B are true when the deviation leads
to a tie.

The expected utility of the sincere strategy profile amounts to

EU
sj=A∗

|0<y≤ȳ(σ̂−j, σ̂j) =
∑

x=−m+2,−m+4,...,m PA(x|A)(
∑

y=1,3,...,ȳ−2 P̂A(x,y)+P̂A(x,ȳ))∑
x=−m+2,−m+4,...,m(PA(x|A)+PA(x|B))

∑
y=1,3,...,ȳ P̂A(x,y)

.

The numerator is the probability that A is true under the cases where the
deviation has some effect. Since the denominator is the same as above, we can
rewrite inequality C.7 as∑

x=−m+2,−m+4,...,m

(
PA(x|A)

(∑
y=1,3,...,ȳ−2 P̂A(x, y) + P̂A(x, ȳ)

)
− PA(x|B)

·
(∑

y=1,3,...,ȳ−2 P̂A(x, y) + 1
2
P̂A(x, ȳ)

)
− 1

2
PA(x|A)P̂A(x, ȳ)

)
≥ 0 and further

12



simplify it to ∑
x=−m+2,−m+4,...,m

(PA(x|A)− PA(x|B))

·

( ∑
y=1,3,...,ȳ−2

P̂ (x, y|dj) +
1

2
P̂A(x, ȳ)

)
≥ 0.

(C.11)

Now, we plug in PA(x|A) =
(

m
m+x

2

)
p

m+x
2 (1−p)m−x

2

m+x
2

m
and PA(x|B) =

(
m

m−x
2

)
p

m−x
2 (1−

p)
m+x

2

m+x
2

m
; as well as P̂A(x, y) =

ν(x,y|dj)

( m−1
m+x

2 −1)
. This yields:

∑
x=−m+2,−m+4,...,m

(
m
m+x

2

) m+x
2

m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)
·

( ∑
y=1,3,...,ȳ−2

ν(x, y|dj)(
m−1

m+x
2
−1

) +
1

2

ν(x, ȳ|dj)(
m−1

m+x
2
−1

) ) ≥ 0.

(C.12)

Again, the factors
(

m
m+x

2

)
,

m+x
2

m
, and 1

( m−1
m+x

2 −1)
cancel out since their product is

1. Hence, inequality C.12 becomes

∑
x=−m+2,−m+4,...,m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)
·

( ∑
y=1,3,...,ȳ−2

ν(x, y|dj) +
1

2
ν(x, ȳ|dj)

)
≥ 0.

(C.13)

Inequality C.13 holds for any ȳ ∈ {1, 2, dj, dj + 1, dj + 2, 2dj, 2dj + 1, 2dj + 2}
odd and coincides with condition 2(ii) of Prop. C.5.

We have derived the implications for an arbitrary expert with degree dj > 0
and for some arbitrary ȳ ∈ {1, 2, dj, dj + 1, dj + 2, 2dj, 2dj + 1, 2dj + 2}. The
derived conditions 2(i) and 2(ii) must hence hold for any dj ∈ {d1, ..., dm}
such that dj > 0. For the case of the empty network, in which no single expert
has an audience, the strategy profile σ̂ is not interesting to study because
communication is impossible, but formally still Prop. C.5 applies. In this
special case condition 2 is trivially satisfied. Thus, we have shown that if σ̂ is
an equilibrium, then the second condition of Prop. C.5 is also satisfied.

Part II. “IF”. Suppose that the two conditions of Prop. C.5 are satisfied. We
show that σ̂ is an equilibrium by deriving the implications of these two conditions
for every kind of player.

• Non-experts without a link: Consider any non-expert i ∈ N with di = 0. The
set of strategies is {A,B, φ} and σ̂i = φ. Suppose condition 1 of Prop. C.5
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holds, which is inequality C.6. In part I of the proof we used a sequence of
transformations to rewrite inequality C.1 as inequality C.6. Since these were all
equivalence transformations, the assumption that inequality C.6 holds implies
that inequality C.1 holds. Thus, condition 1 of Prop. C.5 implies that for a
non-expert without a link deviating from σ̂ does not increase expected utility,
given that the outcome is y = +1, i.e., given that the deviation has any effect
on the outcome.

• Experts with an audience: Consider any expert j ∈ M with dj > 0. This
expert has (3× 3)2 = 81 strategies because she chooses one of three messages
and one of three voting actions after receiving one of two signals. To evaluate
different strategies we can assume w.l.o.g. that the expert has received signal
A because neither the utility function nor the strategy profile depends on
the label of the alternatives. This reduces the number of strategies to nine.
Consider any deviation σ′j. This deviation reduces the voting outcome y that
is attained under σ̂ by a number ȳ ∈ {1, 2, dj, dj+1, dj+2, 2dj, 2dj+1, 2dj+2}.
For each of these numbers conditions 2(i) and 2(ii) of Prop. C.5 are equivalent
to inequality C.7 since the conditions 2(i) and 2(ii) were derived by equivalence
transformations of inequality C.7. Thus, for any deviation of an expert with an
audience, the expected utility is weakly smaller than under σ̂, when restricting
attention to the cases where the deviation has some effect on the outcome and
hence in general as well.

• Experts without an audience: Consider any expert j ∈ M with dj = 0.
W.l.o.g. assume that j has received signal A. Under σ̂ expert i would vote A.
Alternatively, she can vote B respectively abstain, which reduces the outcome
y by two respectively by one vote. (These deviations have already been con-
sidered for experts with an audience when letting ȳ = 2, respectively, ȳ = 1.)
These deviations are not increasing expected utility since condition 2(i) of
Prop. C.5 holds in particular for ȳ = 2 and condition 2(ii) of Prop. C.5 holds
in particular for ȳ = 1 such that inequality C.7 is satisfied.

• Non-experts with a link: Consider any non-expert i ∈ N with di = 1. W.l.o.g.
assume that i has received message A. Under σ̂ non-expert i votes A. Al-
ternatively, he can vote B respectively abstain, which reduces the outcome y
by two respectively by one vote. (The effect of these two deviations is as if
an expert with signal A would vote for B respectively abstain.) Again, since
condition 2(i) of Prop. C.5 holds in particular for ȳ = 2 and condition 2(ii) of
Prop. C.5 holds in particular for ȳ = 1, inequality C.7 is satisfied such that
these deviations do not increase expected utility.

We have shown in part II of the proof that the conditions 1 and 2 provided in
Prop. C.5 imply that no player can beneficially deviate from σ̂.
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C.3 Partisans

C.3.1 Model with Partisans

We have so far assumed that all agents have the same preferences, namely they
want the policy to match the state of the world. Now, we introduce agents who
try to induce a specific policy regardless of the state of the world, e.g., due to
the expectation of personal perquisites. We call them A-partisans or B-partisans
according to their preferred policy. Throughout we assume that the number of A-
partisans equals the number of B-partisans. We introduce partisans as members of
the set M who can potentially communicate with non-experts in N . Non-experts
cannot directly observe whether “their” sender is an expert or a partisan, but the
number of experts mE and the number of partisans mA = mB are known.

Formally, we assume that the network g is given and that nature draws an
allocation of the given experts and partisans to the nodes in M . Assuming that
each allocation has the same probability, the probability that a given sender is an
expert is simply mE

m
. We consider the position of each expert or partisan as her

private information. Since partisans have no incentive to utilize signals about the
true state of the world, we assume that they do not receive a signal.

We extend the definition of the two focal strategy profiles σ∗ (“let the experts
decide”) and σ̂ (sincere) to the model with partisans by assuming that the latter
communicate and vote their preferred alternative.39 For each partisan j voting and
communicating the preferred alternative is a best response to σ∗−j, respectively to
σ̂−j. For the “let the experts decide” strategy profile σ∗ we assume in addition that
all non-experts abstain independent of their received message such that they follow
neither an expert’s nor a partisan’s message.

The notion of informational efficiency of Definition 1 still applies to this extension
of the model. Note, however, that an informationally efficient strategy profile only
maximizes the expected utility of all experts and non-experts, but generally not of
any partisan.

The extension of the baseline model that incorporates partisans does not alter
the results we have established so far. In particular, given that the number of A-
partisans equals the number of B-partisans, Propositions 1, 2, and 3 carry over.
This is formally shown as Propositions C.6, C.7, and C.8 in the next subsection.

C.3.2 Propositions with Partisans

Proposition C.6. In the extended model with an equal number of partisans (mA =
mB), there exist efficient equilibria for any network structure. For instance, the “let
the experts decide” strategy profile σ∗ is efficient and an equilibrium for any network
structure.

Proof. Since the votes of the partisans balance each other out, the “let the ex-
perts decide” strategy profile σ∗ always implements the majority signal and is hence

39By allocating experts to positions in M , the strategy space of an expert increases since they
can potentially condition their strategy on the position. In the focal strategy profiles σ∗ and σ̂ the
experts’ strategies do not rely on their position.
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efficient. Therefore, it maximizes the expected utility for any expert and any non-
expert.40 Thus, we only have to check potential deviations of partisans. Deviations
in the communication strategy are ineffective because all members of the audience
abstain unconditionally under σ∗. Changing the voting action cannot increase ex-
pected utility because an A-partisan cannot increase the likelihood that A is chosen
when deviating from voting for A; and analogously for B-partisans.

Proposition C.7. Consider the extended model with an equal number of partisans
(mA = mB). Let m = |M | ≥ 5, let m be odd, and let the number of links l :=

∑m
j=1 dj

be even. The sincere strategy profile σ̂ is an equilibrium if (a) the network is strongly
balanced, and only if either (b) the network is weakly balanced or there is an agent
who is never pivotal. The sincere strategy profile σ̂ is efficient if and only if (a) the
network is strongly balanced.

Proof. First, we observe that Lemma B.1 carries over to the model extension with
partisans. In particular, representativeness (of g under σ̂) is unaffected and it is
equivalent to both condition (a), i.e., strong balancedness, and to informational
efficiency (under σ̂), given that mA = mB.

Now, suppose strong balancedness is satisfied. Then σ̂ is efficient and, hence, ex-
perts and non-experts cannot improve by deviating. When an A-partisan effectively
deviates from σ̂ either she or her audience stops voting for A. This does not increase
the likelihood that A is implemented. This holds analogously for B-partisans. Thus,
there is no profitable deviation for any player.

It remains to show that weak balancedness is a necessary condition for σ̂ to be
an equilibrium; or there must be an agent who is never pivotal under σ̂. Suppose
that all agents can be pivotal under σ̂. Let i be a non-expert listening to a sender
with maximal degree d1 and let w.l.o.g. A be the message received. Following the
arguments of the proof of Prop. 2, we get the following: If weak balancedness (i.e.,
inequality B.8) is violated, then pivotality of non-expert i implies that a majority of
the members of M (experts and partisans) have voted message B. Since mA = mB,
B is then the majority signal and thus, the probability that A is true is below 0.5.
Hence, non-expert i can improve by not voting the message.

Proposition C.8. In the extended model with an equal number of partisans (mA =
mB), there are networks in which the sincere strategy profile σ̂ is both an equilibrium
and exhibits informational inefficiency.

Proof. We show the proposition by an example. Let m = 7, mA = mB = 2,
and n = 4. Let the network structure be as in the weakly balanced network of
the experimental treatments in Study II (i.e., the second network in the lower
panel of Figure 3) such that the degree distribution of the experts and partisans
is (d1, d2, d3, d4, d5, d6, d7) = (1, 1, 1, 1, 0, 0, 0). We first show that σ̂ exhibits infor-
mational inefficiency and then that σ̂ is an equilibrium.

40With the presence of partisans efficient strategy profiles are not automatically equilibria any-
more, but efficient strategy profiles with partisans who cannot improve are.
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Inefficiency. To see that σ̂ is inefficient, consider the relation between the signal
distribution and the voting outcome. Suppose that two experts have received signal
A and one expert has received signal B. Assume that the four non-experts happen
to be linked to the two B-partisans, to the expert who received the signal B, and
to one of the experts who received signal A. In this case, σ̂ implies that B wins by
one vote. Since this is an instance in which the majority signal is not chosen by the
group, σ̂ is not efficient in the current network.

Equilibrium. We show that none of the agents has an incentive to deviate from σ̂.
Consider first any non-expert i ∈ N . He is pivotal if without his vote the outcome
of the election is a tie (5:5). This occurs either if there are two messages of each
kind and i has received the majority signal as the message; or if there are three
messages of the minority signal and one message of the majority signal and i has
received the minority signal as the message. Non-expert i’s belief that his message,
say A, is true, conditional on his pivotality, amounts to

pi(A|A, piv) =
3p2(1− p) 4

7 ∗
9
20 + 3p(1− p)2 3

7 ∗
4
20

3p2(1− p) 4
7 ∗

9
20 + 3p(1− p)2 3

7 ∗
4
20 + 3p(1− p)2 4

7 ∗
9
20 + 3p2(1− p) 3

7 ∗
4
20

and simplifies to

pi(A|A, piv) =
p2(1− p)3 + p(1− p)2

[p2(1− p) + p(1− p)2] (3 + 1)
>

1

2
.

Hence, non-expert i’s expected utility from following the message as prescribed by
σ̂ is larger than his utility from abstention or voting the opposite.

Now, consider an expert j with dj = 0. Assume w.l.o.g. that j has received
signal A. By deviating from σ̂j this expert only changes the outcome if A would
win by one vote (it is not possible that A wins by two votes). The draws of nature
that lead to this outcome are all such that A is the majority signal. If A were the
minority signal and expert j with dj = 0 had received A, alternative B would get
at least six votes (because there are two B-partisans and two experts with signal B
and at least two of them have a non-expert who listens to them) and always win
under σ̂. Thus, j can only affect the outcome if A is the majority signal. Since the
probability that A is correct is then above 0.5, a deviation from σ̂j cannot increase
expert j’s expected utility.

Now, consider an expert j with dj = 1. A deviation only affects the outcome
if the signal that j has received wins under σ̂, but not when j deviates. W.l.o.g.
assume that expert j has received signal A. Since j can reduce the number of votes
for A by at most two and increase the number of votes for B by at most two (when
he communicates and votes the opposite), the outcomes #A : #B that expert j
can overturn are 7:4 and 6:5. We proceed by showing for each of these outcomes
that the probability that A is correct is above 0.5 such that there is no incentive to
deviate from σ̂, which implements A. The outcome 7:4 with j receiving A is reached
under σ̂ only if signals were 3:0 or 2:1 in favor of A. Since in these two cases the
probability that A is true is above 0.5, overruling outcome 7:4 decreases expected
utility. The outcome 6:5 can be based on two situations (as in the discussion of
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non-experts above). First, it is possible that A is the majority signal and there were
two messages A and two messages B. Second, it is possible that A is the minority
signal and two A-partisans plus one expert (the one holding the minority signal)
have sent message A. Using the probabilities of these two events, we observe that A
is more likely to be true than B, given that j has received signal A and the outcome
is 5:4, if and only if the following inequality holds:

3p2(1− p)2

3
∗ 9

20
+ 3p(1− p)2 1

3
∗ 4

20
≥ 3p(1− p)2 2

3
∗ 9

20
+ 3p2(1− p)1

3
∗ 4

20
.

The equation compares the probability that A is true when signals are 2:1 and 1:2
on the left-hand side with the probability that B is true when signals are 2:1 and
1:2 on the right-hand side, given that j has received signal A and the outcome is
5:4. The inequality simplifies to

(
3p2(1− p)− 3p(1− p)2

) [2

3
∗ 9

20
− 1

3
∗ 4

20
,

]
≥ 0,

which is true (since p > 1
2
). Hence, any outcome that an expert with an audience can

overturn in this example is more likely to match the true state than the alternative.
Finally, partisans cannot improve by a deviation because, given the others’ strate-

gies under σ̂, they can only reduce the likelihood of their preferred outcome by a
deviation. Hence, σ̂ is an equilibrium despite its informational inefficiency.
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D Instructions

The original instructions are written in German and can be requested from the
authors. On the next pages we provide an English version which is a sentence-by-
sentence translation of the original instructions, first for Study I, then for Study II.
The instructions of each study are followed by the questions of comprehension.

19



SVCnet rel. 

1 
 

Welcome to today’s experiment! 

Please note that no communication is allowed from now on and during the whole experiment. If you 

have a question please raise your hand from the cabin, one of the experimenters will then come to 

you. The use of cell phones, smart phones, tablets, or similar devices is prohibited during the entire 

experiment. Please note that a violation of this rule leads to exclusion from the experiment and from 

any payments. 

All decisions are taken anonymously, i.e. none of the other participants comes to know the identity 

of the others. The payoff is also conducted anonymously at the end of the experiment. 

 

Instructions 

 

In this experiment you will choose along with your group one out of two alternatives whereupon just 

one  alternative  is  correct  and  the other  is wrong. Only  the  correct  alternative  leads  to  a positive 

payoff  for each member of  the group. Some members of  the group will receive  information about 

the  correct alternative. This  information  is accurate  in 60 out of 100  cases. The group decides by 

voting  which  alternative  will  be  implemented.  The  group  is  furthermore  arranged  in  a 

communication network. Certain members of the group can – depending on the network structure – 

transmit a message to other members before the group ballots for the alternatives.  

The sequence of each individual round consists of the following 4 parts. 

 

1. Information 

You will receive the role of an Informed or an Uninformed at random (and you will keep it during the 

entire experiment). There are two alternatives: alternative “circle” and alternative “triangle”. At the 

beginning  of  each  round  one  of  the  two  alternatives will  be  assigned  at  random  and with  equal 

likelihood  as  the  correct  alternative.  The  “Informed”  receive  information  about  the  correct 

alternative which is accurate in 60 out of 100 cases. (The Informed will not necessarily all receive the 

same  information).  The  “Uninformed”  will  not  receive  any  information  about  what  the  correct 

alternative is. 
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2. Communication 

You will randomly be divided  into groups of 9 members. A group  is composed of 5  Informed and 4 

Uninformed. All group members are arranged  in a  communication network. At  the beginning of a 

round  you  get  to  know  the network  structure and  your position  in  the network. You  can  see  the 

possible networks pictured in the figure below.  

                

5  Informed  receive  in  randomized  arrangement  the  positions  Above  1  to  5  in  the  network.  4 

Uninformed receive in randomized arrangement the positions Below 1 to 4 in the network. Everyone 

knows therefore that someone with an upper position is an Informed and that someone with a lower 

position  is an Uninformed.   The network structure  reveals who can communicate with whom. The 

Uninformed can be recipients but not senders of a message.  The Informed who are in the position of 

a sender send either the message “circle” or the message “triangle” or they don’t send any message 

to their recipient(s).  Each sender can send exactly one message to all of its (his/her) recipients. Not 

every  Informed  is  necessarily  a  sender.  This  depends  on  the  network  structure  and  the  network 

position. The connecting  lines between upper and  lower positions  in  the network display who can 

send a message to whom. 
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3. Voting 

You  can decide  to vote  for “circle,”  to abstain  from voting, or  to vote  for “triangle.” The 2 Circle‐

advocates  always  vote  for  “circle”  and  the  2  Triangle‐advocates  always  for  “triangle.”  The  voting 

result  in  the  group  is  the  alternative  (circle or  triangle) with  the most  votes.  In  case of  a  tie  the 

computer will pick one of the two alternatives at random and with the same probability. 

 

 

4. Outcome 

At the end of the round you will get to know the voting outcome as well as the right alternative. If 

they match, e.g. the voting outcome  is triangle and the right alternative  is triangle, you will receive 

100 points. Otherwise you will not receive any points. At the end of 40 rounds 3 rounds will be drawn 

randomly, which are then relevant for the payoffs. The rate of exchange between points and Euro is 

the  following:  20  points  correspond  to  1  Euro.  You  will  receive  5  Euro  additionally  for  your 

participation in the experiment.   
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Procedure of the experiment 

40 rounds will be played  in total. The composition of the group changes from round to round. The 

network structure changes every 5 rounds. There will be a short questionnaire subsequent to the 40 

rounds of  the experiment. Prior  to  the 40  rounds of  the experiment 4  sample  rounds are played. 

These are not payoff‐relevant. (In each sample round a different network is introduced.) 

Summary of the procedure of the experiment:  

1. Reading of the instructions 

2. Questions of comprehension concerning the instructions 

3. 4 sample rounds 

4. 40 EXPERIMENTAL ROUNDS 

5. Questionnaire 

6. Payoffs 

If you have a question, please raise your hand from the cabin, we will then come to you. 

 



 

Comprehension questions 

1. Which of the following statements is correct? (Please checkmark) 

a. The role of the Informed/Uninformed changes from round to round.  

b. The group affiliation changes from round to round. 

c. The network changes from round to round. 

 

2. Which of the following statements is correct? (Please checkmark) 

a. In each round either the alternative „circle” or the alternative „triangle“ is correct, namely with a 

probability of 50% no matter which alternative has been most frequently correct in the previous rounds. 

b.  If „triangle“ was 7 times correct in the previous 10 rounds and „circle“ only 3 times, then in the current 

round it is more likely that „circle“ is correct instead of „triangle“. 

c. If „circle“ was 7 times correct in the previous 10 rounds and „triangle“ only 3 times, then in the current 

round it is more likely that „circle“ is correct instead of „triangle“.  

 

3. Which of the following statements is correct? (Please checkmark) 

a. The „Informed“ in the group know for sure which alternative is correct. 

b. All „Informed“ in the group share the same opinion about what the correct alternative is. 

c. Each „Informed“ in the group receives some information about which alternative is correct and this 

information is accurate in 60 out of 100 cases. 

 

4. Which of the following statements is correct? (Please checkmark) 

a. Each „Informed“ is a sender. 

b. Each sender is an „Informed.“ 

c. A sender can be an „Informed“ or an “Uninformed.” 

 

5. Which of the following statements is correct? (Please checkmark) 

a. If the correct alternative is „circle“ and you vote for circle, you will always receive 100 points. 

b. If the correct alternative is „circle“ and a majority of the participants vote for circle, you will receive 100 

points. 

c. If the correct alternative is „circle“ and a majority of the participants vote for triangle, you will receive 

100 points. 
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Welcome to today’s experiment! 

Please note that no communication is allowed from now on and during the whole experiment. If you 

have a question please raise your hand from the cabin, one of the experimenters will then come to 

you. The use of cell phones, smart phones, tablets, or similar devices is prohibited during the entire 

experiment. Please note that a violation of this rule leads to exclusion from the experiment and from 

any payments. 

All decisions are taken anonymously, i.e. none of the other participants comes to know the identity 

of the others. The payoff is also conducted anonymously at the end of the experiment. 

 

Instructions 

 

In this experiment you will choose along with your group one out of two alternatives whereupon just 

one  alternative  is  correct  and  the other  is wrong. Only  the  correct  alternative  leads  to  a positive 

payoff  for each member of  the group. Some members of  the group will receive  information about 

the  correct alternative. This  information  is accurate  in 80 out of 100  cases. The group decides by 

voting  which  alternative  will  be  implemented.  The  group  is  furthermore  arranged  in  a 

communication network. Certain members of the group can – depending on the network structure – 

transmit a message to other members before the group ballots for the alternatives.  

The sequence of each individual round consists of the following 4 parts. 

 

1. Information 

You will receive the role of an Informed or an Uninformed at random (and you will keep it during the 

entire experiment). There are two alternatives: alternative “circle” and alternative “triangle”. At the 

beginning  of  each  round  one  of  the  two  alternatives will  be  assigned  at  random  and with  equal 

likelihood  as  the  correct  alternative.  The  “Informed”  receive  information  about  the  correct 

alternative which is accurate in 80 out of 100 cases. (The Informed will not necessarily all receive the 

same  information).  The  “Uninformed”  will  not  receive  any  information  about  what  the  correct 

alternative is. 
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2. Communication 

You will randomly be divided into groups of 11 members out of whom 7 are real participants and the 

remaining  4  being  represented  by  the  computer.  A  group  is  composed  of  3  Informed  and  4 

Uninformed  (a  total of 7  real participants of  the  experiment)  as well  as 2 Circle‐advocates  and 2 

Triangle‐advocates  (group  members  represented  by  the  computer).  The  Circle‐advocates 

categorically vote for “circle;” and the Triangle‐advocates categorically vote for “triangle.” All group 

members are arranged in a communication network. At the beginning of a round you get to know the 

network structure and your position  in the network. You can see the possible networks pictured  in 

the figure below. 

 

3  Informed and 4 Advocates receive  in randomized arrangement  the positions Above 1  to 7  in  the 

network.  4  Uninformed  receive  in  randomized  arrangement  the  positions  Below  1  to  4  in  the 

network. Everyone knows therefore that someone with an upper position is either an Informed or an 

Advocate and that someone with a  lower position  is an Uninformed. The network structure reveals 

who can communicate with whom. The Uninformed can be recipients but not senders of a message. 

Sender of the message  is – depending on the network position – an  Informed or an Advocate. The 

Circle‐advocates send the message “circle” to their recipient(s) and the Triangle‐advocates send the 

message “triangle.” The Informed send either the message “circle” or the message “triangle” or they 

don’t send any message to their recipient(s). Each sender can send exactly one message to all of its 

(his/her)  recipients. Not every  Informed or Advocate  is necessarily a  sender. This depends on  the 

network  structure  and  the  network  position.  The  connecting  lines  between  upper  and  lower 

positions in the network display who can send a message to whom. 
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3. Voting 

You  can decide  to vote  for “circle,”  to abstain  from voting, or  to vote  for “triangle.” The 2 Circle‐

advocates  always  vote  for  “circle”  and  the  2  Triangle‐advocates  always  for  “triangle.”  The  voting 

result  in  the  group  is  the  alternative  (circle or  triangle) with  the most  votes.  In  case of  a  tie  the 

computer will pick one of the two alternatives at random and with the same probability. 

 

 

4. Outcome 

At the end of the round you will get to know the voting outcome as well as the right alternative. If 

they match, e.g. the voting outcome  is triangle and the right alternative  is triangle, you will receive 

100 points. Otherwise you will not receive any points. At the end of 40 rounds 3 rounds will be drawn 

randomly, which are then relevant for the payoffs. The rate of exchange between points and Euro is 

the  following:  20  points  correspond  to  1  Euro.  You  will  receive  5  Euro  additionally  for  your 

participation in the experiment.   
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Procedure of the experiment 

40 rounds will be played  in total. The composition of the group changes from round to round. The 

network structure changes every 5 rounds. There will be a short questionnaire subsequent to the 40 

rounds of  the experiment. Prior  to  the 40  rounds of  the experiment 4  sample  rounds are played. 

These are not payoff‐relevant. (In each sample round a different network is introduced.) 

Summary of the procedure of the experiment:  

1. Reading of the instructions 

2. Questions of comprehension concerning the instructions 

3. 4 sample rounds 

4. 40 EXPERIMENTAL ROUNDS 

5. Questionnaire 

6. Payoffs 

If you have a question, please raise your hand from the cabin, we will then come to you. 



 

Comprehension questions 

1. Which of the following statements is correct? (Please checkmark) 

a. The role of the Informed/Uninformed changes from round to round.  

b. The group affiliation changes from round to round. 

c. The network changes from round to round. 

 

2. Which of the following statements is correct? (Please checkmark) 

a. In each round either the alternative „circle” or the alternative „triangle“ is correct, namely with a 

probability of 50% no matter which alternative has been most frequently correct in the previous rounds. 

b.  If „triangle“ was 7 times correct in the previous 10 rounds and „circle“ only 3 times, then in the current 

round it is more likely that „circle“ is correct instead of „triangle“. 

c. If „circle“ was 7 times correct in the previous 10 rounds and „triangle“ only 3 times, then in the current 

round it is more likely that „circle“ is correct instead of „triangle“.  

 

3. Which of the following statements is correct? (Please checkmark) 

a. In each group there are 2 persons represented by the computer who always vote for “circle” and 2 

persons likewise represented by the computer who always vote for “triangle”. 

b. In each group there are 4 persons represented by the computer who always vote for “circle”. 

c. In each group there are 4 persons represented by the computer who always vote for “triangle”. 

 

4. Which of the following statements is correct? (Please checkmark) 

a. The „Informed“ in the group know for sure which alternative is correct. 

b. All „Informed“ in the group share the same opinion about what the correct alternative is. 

c. Each „Informed“ in the group receives some information about which alternative is correct and this 

information is accurate in 80 out of 100 cases. 

 

5. Which of the following statements is correct? (Please checkmark) 

a. Each „Informed“ is a sender. 

b. Each sender is an „Informed.“ 

c. A sender can be an „Informed“, a Circle‐Advocate or a Triangle‐Advocate.  

 

6. Consider a Circle‐Advocate who can send a message. Which of the following statements is correct? (Please 

checkmark) 

a. The Circle‐Advocate always sends the message „circle“. 

b. The Circle‐Advocate sometimes sends the message “triangle.“ 

c. The Circle‐Advocate sometimes does not send any message.  

 

7. Which of the following statements is correct? (Please checkmark) 

a. If the correct alternative is „circle“ and you vote for circle, you will always receive 100 points. 

b. If the correct alternative is „circle“ and a majority of the participants vote for circle, you will receive 100 

points. 

c. If the correct alternative is „circle“ and a majority of the participants vote for triangle, you will receive 

100 points. 

 


