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Abstract

I develop a solution concept, equilibrium coalitional behavior (ECB), which
captures foresight and imposes the requirement that each coalition in a sequence
of coalitional moves chooses optimally among all its available options. The model
does not require, but may use, the apparatus of a dynamic process or a protocol
that specifies the negotiation procedure underlying coalition formation. Therefore,
it forms a bridge between the noncooperative and the cooperative approaches to
foresight. ECB refines subgame perfect equilibrium in extensive form games of
perfect information and provides a complete characterization of the core in char-
acteristic function games. Through applications it is shown that ECB provides a
unified approach to study a wide range of problems involving sequential coalitional
actions, which have hitherto been solved on a case-by-case basis.

JEL classification: C70; C71; C72; D71

1 Introduction

One perspective on the challenges of game theory in general and cooperative game theory
in particular is given by Harsanyi and Selten:

An even more serious shortcoming of classical game theory is its failure to provide any
usable solution concepts for some theoretically and empirically very important classes of
cooperative (and of less than fully cooperative) games. These include:

1. Games intermediate between fully cooperative and fully noncooperative games. Ex-
amples are games where some types of agreements are enforcable while others are
not; games where some groups of players are able to make enforcable agreements but
others are not; and games where enforcable agreements can be concluded at some
stages of the game but not at other stages.

2. Cooperative games with a sequential structure. (There is some overlap between cases
1 and 2.) These are games involving two or more successive stages and permitting
agreements to be built up gradually in several consecutive steps. (Harsanyi and
Selten (1988))
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Fanning, Licun Xue and Roberto Serrano for helpful comments and suggestions.
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Many economic interactions are sequential. Even when such interactions involve agree-
ments among coalitions, the literature leans toward noncooperative game theory. This is
because there is no generally accepted way of solving these problems using a cooperative
solution concept, i.e. without explicitly specifying the bargaining/negotiation procedures.
But applying a noncooperative approach has its own problems, in particular such an ap-
proach may require ad hoc assumptions on how players negotiate and it comes at the
cost of greater complexity. This has been eloquently expressed by Aumann:

when one does build negotiation and enforcement procedures explicitly into the model,
then the results of a noncooperative analysis depend very strongly on the precise form
of the procedures. (...) But problems of negotiation are usually more amorphous; it is
difficult to pin down just what the procedures are. More fundamentally, there is a feeling
that procedures are not really all that relevant (...) Finally, detail distracts attention from
essentials. Some things are seen better from a distance; the Roman camps around Metzada
are indiscernible when one is in them, but easily visible from the top of the mountain.
Aumann (1987)

This is the reason why one might not want to stick with noncooperative game theory
in sequential games with coalitional actions. Although cooperative game theory has the
advantage of abstracting away from the details, it is not suited to deal with sequential
problems. The reason is that most solution concepts in cooperative game theory are static.
For instance take the core, which is the set of outcomes that cannot be improved upon by
any group of players through an action that the group has the power to implement. But,
the definition of the core does not address what happens after the status quo is changed;
it does not consider the possibility that the initial objection might be followed by further
objections.

This is also an issue when one tries to incorporate foresight into cooperative solution
concepts. Consider the notion of the core again, even if we imagine that a move might be
followed by other moves it is not obvious how to extend the definition to this case. Intu-
itively, this would require considerations similar to backward induction to be introduced
in a cooperative setting. But, in the absence of the structure of an extensive form, it is
not at all obvious how to incorporate such considerations.

That is why, although a number of solution concepts have been developed to incor-
porate foresight in the cooperative approach, it has been hard to incorporate the idea of
what Ray and Vohra (2014) calls ‘maximality’ to these solution concepts. Which sim-
ply refers to the observation that in these solution concepts coalitions may not take the
optimal moves that are available to them.

This issue resembles the problem that in sequential move noncooperative games, a
Nash equilibrium may not prescribe the optimal course of action at ‘unreached’ nodes
of an extensive form. This has been famously resolved by subgame perfect equilibrium
by requiring optimality at every place where a decision is made. Although subgame
perfection and backward induction cannot be readily incorporated into a cooperative
domain, it is at the very least desirable that in the specific problems in which such an
approach is applicable it should be prescribed.

In this paper my main goal is to come up with a solution concept that incorporates
foresight in games with coalitional actions and that (i) prescribes the optimal course of
action at any place where a decision is made, just like the noncooperative approach and
(ii) abstracts away from the details of the negotiation and enforcement procedures, just
like the cooperative approach.

The main contributions of coming up with the solution concept, equilibrium coalitional
behavior (ECB), are:
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1. Linking the noncooperative and the cooperative approaches to farsighted coalition
formation

ECB does not require, but might use, the details of how players negotiate to form
coalitions. Therefore, it is applicable to both noncooperative and cooperative se-
quential move games and it can be used to study foresight in a cooperative setting.
This means that ECB has the potential to form interesting relationships between
very different solution concepts. The relationships ECB engenders range from a
fully noncooperative dynamic solution concept, the subgame perfect equilibrium,
to the static cooperative solution concept of the core, to the more recently developed
solution concepts of Konishi and Ray (2003) and Dutta and Vohra (2015).

2. Providing a unified approach to study sequential games with coalitional actions

A wide range of situations involve sequential actions by groups of players; examples
include club/political party formation, conflict, customs unions, network formation
and legislation. Although in most of these situations there is no explicit negotiation
procedure, the literature leans toward noncooperative game theory to study these
problems. This means that the description of the game must be augmented with
an (oftentimes) arbitrary negotiation procedure. The lack of consistency in the
literature means that each problem is handled in a case-by-case basis and depending
on the situation different solution concepts and different negotiation procedures are
used. ECB provides a unified and consistent way to study these problems, which
will be shown in Section 7 through the characterization of ECBs in two general
classes of games that have been previously used in the literature to study a range
of situations.

I will use the following example due to Roberts (2015) to demonstrate the solution
concept and these points.

Example 1. Roberts (2015)
There is a society N = {1, 2, ..., n} and an initial club F = {1, 2, ..., f} where f is a

positive integer. At the initial period, any strict majority within the club can choose to
expand or shrink the club at a cost. Once the club changes any strict majority within the
new club can choose to expand or shrink this new club. This can go on indefinitely. There
is a seniority system such that only clubs of the form sj = {1, 2, ..., j} for some integer
j are allowed. Everybody in the society wants to be a part of the club and conditional on
being in the club, everybody prefers a smaller club to a larger club. Players discount the
future with a discount factor arbitrarily close to 1.

Coalitions are the main actors in this problem, which means that we cannnot study it
using a noncooperative solution concept without including details on how players nego-
tiate to take an action that can only be taken by a coalition. The details will inevitably
be arbitrary.

Roberts (2015) solves the problem with two different solution concepts, Markov voting
equilibrium and median voter rule. Acemoglu, Egorov and Sonin (2012) also solve this
problem with two different approaches. They define a noncooperative game by introduc-
ing a protocol and they study the Markov perfect equilibria of the resulting game. They
also take an axiomatic approach to show that the result does not depend on the details
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introduced in the noncooperative approach. These two papers alone that apply four dif-
ferent solution concepts to similar problems show how difficult it is to handle sequential
move coalitional games in a systematic manner.1

ECB can be directly applied to the problem without any need of introducing details
on how agreements are reached and it provides a simple and intuitive solution. To see
how, we first need to see the domain of ECB, the extended coalitional game.

An extended coalitional game includes a set of players, a set nodes, a set of actions
available at each node to each coalition and the utilities defined over action sequences.
For instance, in the game above the set of players is {1, 2, ..., n}, each node corresponds
to a possible club and the actions at each node correspond to the decision of a majority
within the current club to change the club. For example, if we are at a node corresponding
to the club {1, 2, 3} then the coalition {1, 2} (as well as {2, 3} or {1, 3} or {1, 2, 3}) will
have the possible action of expanding the club by admitting 4 or throwing 3 out of the
club.2 Finally, the utility of an action sequence would be the discounted utility of the
clubs visited along the sequence minus the transaction costs.

An extended coalitional game is a generalization of the extensive form under perfect
information, where the three main differences are: (i) Coalitions might take actions, (ii)
there might be multiple individuals or coalitions capable of taking actions at a certain
node and (iii) The game need not be a game that is representable as a tree, for instance
the representation might include cycles.

A coalitional behavior assigns a single action to each node of an extended coalitional
game. The use of a coalitional behavior imposes consistent expectations on the side
of individuals and coalitions. An ECB is simply a coalitional behavior that satisfies
sequential rationality for coalitions, i.e. that is immune to coalitional deviations at each
node of the game. Hence, under an ECB each coalition is acting optimally given its
expectation (the coalitional behavior).

Although the precise definition of a coalitional deviation will be provided in Section 3,
this information is enough to see how ECB solves Example 1. If for any reason the club
that is composed of only player 1 forms then this club will never change as this club is 1’s
favorite and he is the only member of the club. Now consider the club that is composed
of players 1 and 2, any strict majority should include player 2 and since the club is player
2’s favorite, this club should also be stable. But given that this club is stable the club
composed of players 1, 2 and 3 cannot be stable, as coalition {1, 2} forms a majority and
they prefer the club composed of 1 and 2 to the one composed of 1, 2 and 3. But then the
club composed of players 1, 2, 3 and 4 is also stable as any majority should include players
3 or 4 and there is no stable smaller club that includes these players. The argument can
continue and by induction we can show that sj = {1, 2, ..., j} is stable iff j = 2k for some
k = 0, 1, 2, ..

The argument is directly applied to the description of the game without any need
of introducing details on how agreements are reached. In Section 7, I will characterize
the ECBs of two general classes of games, which include this problem and various other
applications. The section establishes ECB as a unified approach to solve problems with
sequential coalitional actions where there is no obvious way to apply noncooperative

1It is important to note that both of the papers study a more general class of problems, nevertheless
ECB can be applied to the more general class they study as we will see in Section 7.

2More precisely, if we are at a node corresponding to the club {1, 2, ..,K} then any strict majority
will have the option of admitting {K + 1, .., s}, where K < s ≤ n or throwing {s, ..,K} out of the club,
where 1 < s ≤ K.
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solution concepts.
Although this example shows the advantage of using ECB over noncooperative so-

lution concepts, it does not explain the problem of maximality of cooperative solution
concepts that incorporate foresight. Most of the cooperative solution concepts that in-
corporate foresight, such as the farsighted stable set3 makes the same prediction as ECB
in this example, however they suffer from the issue of maximality that noncooperative
solution concepts have no problem with. This can be easily seen in a simple two period
noncooperative game.

Example 2. A Noncooperative Game
There are four states, A, B, C and D. A is the status quo and player 1 can choose

to change the state to B or not. If player 1 changes the state to B, then player 2 can
change it to C or D or he might choose not to change the state. Utilities are defined over
states and given by u(A) = (1, 1), u(B) = (0, 0), u(C) = (0, 4) and u(D) = (2, 2), where
the first entry denotes the payoff of player 1.

In this example, ECB can be found through backward induction. Therefore, it is
equivalent to the unique subgame perfect equilibrium, which states that 1 will not change
the state at A and 2 will change the state to C at B.

This is not the case for the farsighted stable set. Under this solution concept player
1 would choose to move to state B, because she ‘unreasonably’ believes that player 2
would choose to move to D instead of C when he gets to make a decision. But once
we are at state B player 2 has no incentive to move to state D, as C provides a strictly
higher payoff to him. In a nutshell this is the problem of ‘maximality’, that players form
unreasonable expectations and take suboptimal actions based on these expectations.

The problem of maximality is not limited to the farsighted stable set nor is it limited
to this specific example. It has proven hard to incorporate such considerations into
cooperative solution concepts, mostly because (unlike this example) the domain they are
defined on does not admit an obvious way to incorporate considerations like backward
induction. For a more general discussion see Ray and Vohra (2014). It will soon become
clear that by defining the concept as a best response to a certain arrangement, ECB
avoids these problems and it allows for backward induction when possible.

As we have already seen, ECB can be applied to both cooperative games in which
the main building block is coalitional actions and to noncooperative games. Through
its relationship to attractive solution concepts in different domains ECB provides a link
between the noncooperative and the cooperative approaches to foresight. ECB refines
subgame perfect equilibrium in extensive form games of perfect information (see Section
4), provides a complete characterization of the core in characteristic function games (see
Section 5) and it is closely related to cooperative approaches to foresight developed by
Konishi and Ray (2003) and Dutta and Vohra (2015) (see Section 6).

Finally, there are many situations in the literature that involve coalitions sequentially
building up agreements and which have been traditionally analyzed within the context of
noncooperative games, in particular with the use of subgame perfect equilibrium and its
refinements. These situations include network formation (Aumann and Myerson (1988)),
sequential formation of binding agreements (Bloch (1996), Ray and Vohra (1999)), dy-
namic club formation (Barbera, Maschler and Shalev (2001), Roberts (2015)) and various
political games (Acemoglu, Egorov and Sonin (2008,2012)). To study these situations in

3 Formal definition of the farsighted stable set will be given in Section 6, but no knowledge of the
concept is needed to understand the following argument.
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a noncooperative setting, the authors needed to complement the description of the game
with the rules of coalition formation and in most cases they also needed to refine subgame
perfect equilibrium to get reasonable predictions.

This inevitably brings a level of arbitrariness to the analysis. ECB provides a simpler
and consistent way to approach these problems without specifying an arbitrary negotia-
tion procedure and without using a wide range of different solution concepts. This will
be shown through the characterization of ECBs in two classes of games that can be used
to study the situations analyzed in the works cited above.

I will start with the Literature Review in Section 2. In Section 3, I define the domain
and the solution concept. In Sections 4, 5 and 6, I study extensive form games of perfect
information, characteristic function games and abstract games, respectively. In Section
7, through applications I show that ECB provides a unified approach to study sequential
games with coalitional actions. Section 8 concludes by discussing some issues regarding
ECB.

2 Literature Review

The recent literature on coalition formation has sought to incorporate foresight in coali-
tional decision making. Freely borrowing from non-cooperative concepts and tools, one
strand of the literature has modeled coalition formation process explicitly as a non-
cooperative game. This is done at the expense of complexity and sometimes unintuitive
assumptions on the negotiation procedure among the individuals.

Another strand of the literature abstracts away from the details of the negotiation
procedure and takes coalitional actions as opposed to individual actions as the main
building block of the model. This is the cooperative approach and it can be roughly
divided into two: the static and the dynamic approach. The latter differs from the
former by explicitly modeling the coalition formation process as a dynamic process.

In this section I will briefly review these strands of the literature and argue that ECB
is the natural result of the developments and it stands at the intersection of all three
approaches. Inevitably the review is incomplete, for extensive reviews see Mariotti and
Xue (2003), Ray (2008) and Ray and Vohra (2014).

2.1 The Noncooperative Approach

The noncooperative approach is by far the most popular approach to analyze sequential
games of coalition formation. This is in part due to the cooperative approach’s failure to
incorporate ‘maximality’ of actions in its solution concepts (see Ray and Vohra (2014)).

In this approach, typically the negotiation process is modeled as offers and counterof-
fers and subgame perfect equilibrium and its refinements are used to solve the problem.
The models heavily rely on the details of coalition formation which might make the
solution sensitive to the details of the game and can make the game complex to solve.

Section 7 contains examples of papers that use the noncooperative approach and shows
how ECB can be applied to the situations they analyze without the assumptions on how
individuals interact and form coalitions. This literature is vast, but apart from the ones
I mention in Section 7, prominent examples include Rubinstein (1982), Stahl (1977),
Chatterjee et al. (1993), Okada (1996), Selten (1981), Krishna and Serrano (1996) and
Moldovanu and Winter (1995).
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Figure 1: ECB is where the noncooperative, static and dynamic approaches meet4

Any perfect information extensive form game is an extended coalitional game and
hence ECB can be directly applied to these games. Furthermore given the close relation
ECB has to subgame perfect equilibrium (see Section 4), ECB can be seen as the natural
extension of subgame perfect equilibrium to sequential games with coalitional actions.

2.2 The Static Approach

The quest to incorporate foresight into the static cooperative solution concepts goes back
at least to Harsanyi (1974), who criticized von Neumann and Morgenstern’s stable set
(1944) for being myopic. Chwe (1994) formalized Harsanyi’s criticism and developed the
solution concepts of the farsighted stable set and the largest consistent set. These are
set valued concepts in the tradition of von Neumann and Morgenstern’s stable set, which
use the indirect dominance relation instead of the direct dominance relation the stable
set uses.5

Xue (1998) argued that this approach is not entirely satisfactory as farsighted players
should not only consider the final states their actions lead to, but they should also con-
sider how these states are reached. By using Greenberg (1990)’s framework Xue (1998)
proposed to use paths to incorporate foresight into his solution concepts. But Xue (1998)

4NE and SPE correspond to Nash equilibrium and subgame perfect equilibrium, respectively. All
other acronyms correspond to the solution concepts of the authors mentioned on the arcs.

5For more on farsighted stable set see Diamantoudi and Xue (2003), Mauleon, Vannetelbosch and Ver-
toge (2011) and Ray and Vohra (2015). For more on the largest consistent set see Beal, Durieu and Solal
(2008), Bhattacharya (2005), Herings, Mauleon and Vannetelbosch (2009), Mauleon and Vannetelbosch
(2004), Page, Wooders and Kamat (2005) and Xue (1997).
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still used a framework in which players form arbitrary expectations based on optimism
or pessimism to evaluate different sets of paths. Questions remain about these extreme
expectations players hold to evaluate sets of paths, for details see Bhattacharya and Ziad
(2012), Herings, Mauleon and Vannetelbosch (2004) and Ray and Vohra (2014).

Dutta and Vohra (2015) propose to deal with these issues by embodying the far-
sighted stable set with consistent expectations and introducing one-step deviations (also
see Jordan (2006) for an earlier work concerning common expectations and farsighted
stability).

The trend in the static approach is apparent, at each step the solution concepts get one
step closer to the noncooperative approach. It started by incorporating foresight, then
paths and histories and then consistent expectations and one-step deviations (see Figure
1). ECB, which can be cast as a solution concept in the static approach (see Section
6.1) completes this evolution by formalizing the logic of subgame perfection in sequential
coalitional games. By doing so it avoids the drawbacks of the earlier approaches.

2.3 The Dynamic Approach

Given the problems of the static approach some authors found the way out in introducing
an explicitly dynamic solution concept:

there are limits to how effectively one can capture farsightedness in a static
concept of stability. (...) in the present context it seems too confining not
to introduce some details (as well as explicit dynamics). (Ray and Vohra
(2014))

The main solution concept in the dynamic approach is the EPCF (Konishi and Ray
(2003) and Ray and Vohra (2014)), which models coalition formation as an explicitly
dynamic process and the payoffs are discounted with a common discount factor. The
approach proved to be useful in avoiding the pitfalls of the static approach and has also
been used by Dutta, Ghosal and Ray (2004) and Vartiainen (2011). ECB, which can be
cast as a solution concept in the dynamic approach is related to the EPCF. The relation
will be discussed in Section 6.2.

2.4 Equilibrium Coalitional Behavior

ECB can be applied to noncooperative games and the domain of ECB allows us the
flexibility to define it both as a static and a dynamic solution concept. Hence, unlike all
of the other solution concepts discussed above ECB belongs to all of the three approaches.
Furthermore, as will be shown, ECB is closely related to subgame perfect equilibrium in
the noncooperative approach, Dutta and Vohra (2015)’s solution concept in the static
approach and EPCF in the dynamic approach. Therefore, through linking all of the
three approaches, ECB unifies the field used to study coalition formation games under
foresight (see Figure 1).

3 Preliminaries

The following example will be used to illustrate the domain and the solution concept.
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Figure 2: The Partnership Game

There are three players, 1, 2 and 3. Any two of these three players can form a binding
partnership. When two players form a partnership the remaining player gets a payoff
of 0. If player 1 forms a partnership with player 3 then they get a payoff of 3 and 4,
respectively. If player 2 forms a partnership with player 3 then they get a payoff of 3 and
3, respectively. If players 1 and 2 form a partnership then first player 1 chooses whether
to exert effort or not and then observing player 1’s choice, player 2 chooses whether to
exert effort or not. The game ends after player 2 makes his decision and the payoffs are
realized.

This game can be represented with a tree, where at the start of the game any coalition
of size 2 can form a partnership. If a coalition that includes player 3 forms then the
game ends, otherwise players 1 and 2 play a sequential noncooperative game in which
they sequentially choose whether to exert effort. Both the game and the payoffs are
represented in Figure 2.

This simple game illustrates the points made by Harsanyi and Selten (1988):

1. It is a game intermediate between fully cooperative and fully noncooperative games.
In particular the game is clearly divided into a cooperative stage in which two
players form a binding partnership and a noncooperative stage in which players
individually choose their effort levels. The partnership decision is enforcable and
binding, whereas the effort decisions are made individually and binding agreements
on the effort decisions cannot be made.

2. The game has an obvious sequential structure. The partnership decision is followed
by the effort game.

3. Noncooperative solution concepts, such as the subgame perfect equilibrium, cannot
be applied to the game as it is. Such solution concepts require further information.
We have to make assumptions on how groups decide on certain actions, such as
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the decision to form a partnership. These assumptions will inevitably be arbitrary
and the solution may depend on the particular assumptions made by the modeler.
Furthermore they come at the cost of greater complexity.

The game can be complicated in many directions; it might have multiple stages in
which coalitions take actions, it might have stages at which only coalitions with certain
properties might take actions, it might have an infinite time horizon. Examples of more
complicated games having these features will be discussed throughout the paper.

3.1 The Extended Coalitional Game

The domain of ECB is the extended coalitional game. An extended coalitional game is
defined as Γ = {N,Z, {Az}z∈Z , {�i}i∈N}, where N is the set of players, Z is the set of
nodes, Az is the set of actions available at node z ∈ Z and �i is the preference relation
of player i ∈ N over the set of terminal paths, which will be defined shortly.

An action is a triple (z, z′, S), where the first entry z ∈ Z denotes the node at which
the action can be taken, the second entry z′ ∈ Z denotes the node to which the action
is leading to and the third entry denotes the coalition S ⊆ N that can take the action.
This coalition is called the initiator of the action.

For reasons that will soon become clear, I represent taking ‘no action’ as a particular
action denoted by (z, z, ∅). For any action (z, z′, S), I require S 6= ∅ iff z′ 6= z. Az denotes
the set of all actions that can be taken at node z ∈ Z, hence for all (x, y, S) ∈ Az we have
x = z. Furthermore, I require that Az 6= ∅. This does not mean that an action should be
taken at z; in particular if no action is available at z then Az = {(z, z, ∅)}.

A path is a sequence of actions {ak}k=1,...,K = {(zk, zk+1, Sk)}k=1,...,K , where K might
be infinite. For any path {ak}k=1,...,K , if ai = (z, z, ∅) for some i ∈ {1, .., K} then i = K.
This simply states that the action of taking no action cannot be repeated. A path is
terminal if it is infinite or if aK = {(z, z, ∅)} for some z ∈ Z. Let H denote the set of
all terminal paths. �i denotes the preference relation of i ∈ N on H. The following
examples illustrate the domain.

Example 3. The Partnership Game
This game is defined above. There are three players N = {1, 2, 3}. There are 10

nodes, Z = {a, b, c, d, n, e, ne, nn, en, ee}. At node a any two player coalition can choose
to form a partnership, i.e. Aa = {(a, b, {1, 2}), (a, c, {1, 3}), (a, d, {2, 3})}. At node b,
player 1 can choose to exert effort or not, i.e. we have Ab = {(b, n, {1}), (b, e, {1})}. The
actions at nodes n and e are defined similarly. All other nodes are terminal nodes, i.e.
Aj = {(j, j, ∅)} for j = c, d, nn, ne, ee, en. Note that every terminal path ends up at a
terminal node and the terminal node at which the path terminates determines the utility
of the path, which is represented on the graph.

Most of the solution concepts in the static and dynamic approaches (see the Literature
Review) are defined on the abstract game (see Section 6). The abstract game takes the
convention that the nodes correspond to the states, therefore deciding to stay in one state
(node) is a possible action at each node of an abstract game. The same convention might
also be used in an extended coalitional game. The following example demonstrates a
game with no exogenously stable nodes.6

6An exogenously stable node is a node z such that Az = {(z, z, ∅)}.
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Figure 3: Regime Change

Example 4. Regime Change
This example is a slight modification of Example 1 in Acemoglu, Egorov and Sonin

(2012). There is a society composed of three groups, the elite (E), the middle class (M)
and the poor (P). There are three states, absolutist monarchy (a), constitutional monarchy
(c) and democracy (d). In absolutist monarchy, E decides on whether to change the
regime; in constitutional monarchy M decides on whether to change the regime and in
democracy M and P can together decide on whether to change the regime. Players have
utilities defined on the states: uE(c) > uE(a) > uE(d), uM(c) > uM(d) > uM(a) and
uP (d) > uP (c) > uP (a) and a discount factor δ. The utility of each terminal path is the
discounted utility of states visited along the path. The game is represented in Figure 3.

In this game N = {E,M,P}, Z = {a, c, d}. At node a, E may choose to transi-
tion to c or d or do nothing, i.e. Aa = {(a, c, E), (a, d, E), (a, a, ∅)}. Similarly, Ac =
{(c, a,M), (c, d,M), (c, c, ∅)} and Ad = {(d, a, {M,P}), (d, c, {M,P}), (d, d, ∅)}. Finally,
the utility of player i ∈ N from the terminal path {(zk, zk+1, Sk)}k=1,2,...,K is∑

k=1,..,K

δk−1ui(zk) +
∑
k=K,...

δkui(zK)

Remark 1. An extended coalitional game might leave out many details such as the pro-
cedure with which players communicate to take actions and the order in which coalitions
are allowed to move. This is the main strength of the domain and the solution concepts
defined on this domain.

Remark 2. The game can be conveniently represented as a directed labeled graph
(Z, {Az}z∈Z). Where Z is the set of nodes and Az is the set of arcs whose tail is z
and which is labeled with the corresponding initiators. See Figures 2 and 3 for the graph-
ical representations of the Partnership Game and the Regime Change. This graphical
representation includes every ingredient of the game except for the preferences. Hence,
when convenient I am going to explain the game as a graph instead of writing down all
the ingredients.

3.2 Equilibrium Coalitional Behavior

A coalitional behavior prescribes a unique action at each node of an extended coalitional
game. Let A denote the set of all actions, i.e. A = ∪z∈ZAz.
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Figure 4: φ1 defined for the Joint Project

Definition 1. Coalitional Behavior
A coalitional behavior is a mapping φ : Z → A where φ(z) ∈ Az for all z ∈ Z.

For example for the Partnership Game, let φ1 be a coalitional behavior that specifies
that at node a coalition {2, 3} will form, at node b player 1 will exert effort and player 2
will not exert effort in any node at which he takes an action. Then φ1(a) = (a, d, {2, 3}),
φ1(b) = (b, e, {1}), φ1(n) = (n, nn, {2}), φ1(e) = (e, en, {2}) and φ1(j) = (j, j, ∅) for
j = c, d, nn, ne, en, ee. This coalitional behavior is represented in Figure 4.

Note that each coalitional behavior defines a predicted terminal path at each one of
the nodes, I will simply call this the path of play. For any z ∈ Z let Hz denote the set of
terminal paths that start at z.

Definition 2. Path of play
Given a coalitional behavior φ, a path of play is a mapping σ : Z → H such that

for each z ∈ Z, σ(z) = {(zk, zk+1, Sk)}k=1,..,K = {φ(zk)}k=1,..,K ∈ Hz, where z1 = z and
zk+1 = φ2(zk) for all k = 1, ..., K.7

For instance lets say that σ1 is the path of play defined by φ1 above. Then σ1(a) =
{(a, d, {2, 3}), (d, d, ∅)}, σ1(b) = {(b, e, {1}), (e, en, {2}), (en, en, ∅)} and so on.

Now, we would like to put some restrictions on a coalitional behavior to make it a
prescription that will be followed by rational individuals. Intuitively φ1 does not satisfy
such a criterion, since player 3 is better off forming a coalition with 1 instead of 2.
Furthermore 1 also prefers this to φ1. Therefore, we can say that the coalition {1, 3}
has a profitable deviation from φ1 in which player 3 refuses to form a partnership with 2
and instead 1 and 3 form a partnership. To formalize and generalize this idea I will first
define a deviation from a coalitional behavior and then a profitable deviation.

7φ2(zk) denotes the second entry of φ(zk).
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The idea is that a coalition S ⊆ N can deviate from a coalitional behavior φ to a
coalitional behavior φ′ if it has the power to induce φ′ from φ by refusing to take actions
specified by φ or by taking actions not specified by φ. Intuitively, S cannot refuse to take
an action that is taken by a coalition T with S ∩T = ∅ and S cannot take an action that
can only be taken by a coalition T with T 6⊆ S.

Hence, a deviation by a coalition S from a coalitional behavior φ to a coalitional
behavior φ′ will only be feasible if S can induce φ′ by refusing to take actions specified
by φ whose initiators have a nonempty intersection with S and by taking actions not
specified by φ whose initiators are a subset of S. Finally, we will say that a deviation is
profitable if at every node at which an action changes the deviating coalition is better off
at the new path of play.

Definition 3. Coalitional Deviation
S ⊆ N has a deviation from a coalitional behavior φ to a coalitional behavior φ′ if for

every z ∈ Z such that φ(z) 6= φ′(z) we have

• If φ(z) = (z, z′, T ) where T 6= ∅ then S ∩ T 6= ∅ (If an action specified by φ is not
taken, then S has a member who can refuse to take this action)

• If φ′(z) = (z, z′, T ) then S ⊇ T (If an action not specified by φ is taken, then S
should be able to induce this action)

We say that the deviation by S is profitable if for every z ∈ Z such that φ(z) 6= φ′(z)
we have σ′(z) �i σ(z) for all i ∈ S.8

Two aspects of the definition is worth noting: (i) a deviation might involve any
number of actions, for instance the grand coalition can impose any coalitional behavior
from any other coalitional behavior and (ii) unlike subgame perfect equilibrium, we say
that a deviation is profitable if the coalition is better off at every point where an action
changes. This is necessary for a definition involving coalitional deviations as opposed to
a definition that only lets individuals deviate, as some subset of the coalition might have
no incentive to keep their part of the deviation. This might be seen most clearly in a
simple extensive form. For instance consider the noncooperative stage of the Partnership
Game as a separate game.

In this game first player 1 chooses whether to exert effort and then observing player 1’s
choice player 2 chooses whether to exert effort. Suppose a coalitional behavior specifies
that both players will choose to exert ‘no effort’ at each node. There is a coalitional
deviation from this coalitional behavior by {1, 2} in which player 1 chooses to exert effort
at node b and player 2 chooses to exert effort at node e. This deviation increases the
payoff of both 1 and 2.

But there is a problem with this deviation, in particular once player 1 chooses to
exert effort, player 2 has no incentive to keep his part of the deviation. In other words
in this deviation player 2 has to change his action at e, but this does not increase his
payoff at the new path of play starting at e. The definition of a profitable deviation above
takes this into account by requiring that the deviation increase the payoff of individuals
at every node at which an action changes. Hence, in this example there is no profitable
deviation from the coalitional behavior that specifies that every player will always choose
to exert no effort.

8σ′ and σ are the path of plays corresponding to φ′ and φ, respectively.
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If we get back to the Partnership Game, note that coalition {1, 3} has a profitable
deviation from φ1 in which player 3 refuses to form a partnership with 2 and instead
players 1 and 3 form a partnership. The deviation changes the action at a only and at
the new path of play both players 1 and 3 are better off, hence this is a profitable deviation
by {1, 3}. Lets call the resulting coalitional behavior φ2, i.e. φ2(a) = (a, c, {1, 3}) and
φ2(j) = φ1(j) for all j 6= a.

Now, player 1 has a profitable deviation from φ2 in which he chooses not to exert effort
at node b, the deviation changes the action from node b only and the new path of play is
preferred by 1. Lets call the resulting coalitional behavior φ3, i.e. φ3(b) = (b, n, {1}) and
φ3(j) = φ2(j) for all j 6= e.

There is a deviation from φ3 by coalition {1, 2} in which 1 refuses to form a partnership
with 3 but instead 1 and 2 form a partnership and both players 1 and 2 choose to exert
effort when they are choosing between effort or no effort. Note that this deviation requires
the deviating coalition to change its action at 3 nodes. Although this deviation increases
the payoffs of everyone involved from the root of the game, it is not a profitable deviation
because it does not increase the payoffs of every player involved at each node where an
action changes, for instance at node e in which player 2 changes his action. Indeed, there
is no profitable deviation from φ3.

Now, we are ready for the definition of an ECB. It is simply a coalitional behavior
from which there exists no profitable deviation.

Definition 4. Equilibrium Coalitional Behavior (ECB)
A coalitional behavior φ is an ECB if there does not exist a profitable coalitional

deviation from φ.

In the Partnership Game φ3 is an ECB as there exists no profitable deviation from
it. And also it is easy to see that this is the unique ECB of the game. Now lets find
the ECB of the Regime Change game. First note that as d is the most preferred state
for P and as the consent of P is needed for changing the regime from d, any ECB φ will
assign φ(d) = (d, d, ∅). Otherwise P would simply deviate by refusing to take the action,
which would be a profitable deviation. By the same argument, c is a stable state, i.e.
φ(c) = (c, c, ∅). Given this, at state a, knowing that it is stable E will change the state
to c, hence φ(a) = (a, c, E). It is easy to see that there is no profitable deviation from φ
and hence it is an ECB.

Interested reader might jump to Section 8 that contains (i) an analysis of the one
step deviation property that ECB satisfies in some classes of games and (ii) a discussion
of issues regarding existence. Now I will directly move to the analysis of ECB in three
general domains and study the relationships it engenders with the solution concepts of
these domains. This will be followed by applications.

4 Extensive Form Games

It is easy to see that an extensive form game of perfect information is an extended
coalitional game.

Definition 5. Extensive Form Games of Perfect Information
An extended coalitional game Γ is an extensive form game if the graph of Γ is a tree

and for all z ∈ Z
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• Either Az = {(z, z, ∅)} (i.e. z is a terminal node) or for all (z, z′, S) ∈ Az we have
S = {i} for the same i ∈ N (i.e. only one individual is active).

• For h′, h′′ ∈ Hz and i ∈ N , h′ �i h′′ iff (h, h′) �i (h, h′′) for any path h that ends
at z.

It turns out that in finite horizon extensive form games ECB satisfies the one step
deviation property, which immediately implies that ECB is equivalent to (pure strategy)
subgame perfect equilibrium in finite horizon games.

Unlike subgame perfect equilibrium, the one step deviation property of ECB is not
inherited in infinite horizon games that are continuous at infinity, such as games with
discounting. In games that are continuous at infinity, under the subgame perfect equilib-
rium any profitable infinite deviation can be replaced with a profitable finite deviation.
This is done by truncating the deviation after some period T as the payoffs get less and
less important in future periods. But under an ECB this may not be the case, because
whatever T we truncate the deviation at, the deviation should also increase the payoffs
of the deviators at period T −1. So, we might not be able to replace an infinite deviation
with a finite one. Nevertheless, it is easy to establish that ECB always refines subgame
perfect equilibrium.

4.1 Finite Horizon Extensive Form Games

We say that ECB satisfies the one step deviation property if existence of a profitable
deviation implies the existence of a profitable deviation involving actions stemming from
the same node.

Definition 6. One Step Deviation Property

• A deviation is a one step deviation if every action involved in the deviation stems
from the same node.

• ECB satisfies the one step deviation property on an extended coalitional game Γ if
whenever there exists a profitable deviation there also exists a profitable one step
deviation.

It turns out that finite horizon extensive form games is one domain in which ECB
satisfies this property. For a more thorough analysis of the one step deviation property
see Section 8.1.

Lemma 1. ECB satisfies the one step deviation property in finite horizon extensive form
games.

The proof, as well as all other proofs, is in the Appendix. The idea behind the proof
is simple. Suppose that S has a profitable deviation from a coalitional behavior φ. As the
game is finite and acyclic we can find a node z such that the action from z has changed
after the deviation, but actions at any node that is reachable from z has not changed. But
then S can simply change its action at z, which would be a profitable one step deviation.

Subgame perfect equilibrium also satisfies the one step deviation property in finite
horizon games, hence the equivalence between the two solution concepts follow.

Proposition 1. Let Γ be a finite horizon extensive form game. Then φ is an ECB iff φ
is a pure strategy subgame perfect equilibrium.
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Figure 5: Favor Exchange

The result might seem counterintuitive given that a subgame perfect equilibrium
outcome might Pareto dominate another and ECB allows for coalitional deviations. The
following example should clear up the confusion.

Example 5. Favor Exchange
Player 1 can do a favor for player 2 or not. Following player 1’s decision player 2

decides whether to do a favor for player 1 or not. A player that receives a favor gets a
utility of 1 and a player who provides a favor incurs a cost of 1

2
. The game is represented

in Figure 5.
In this game under the unique ECB (also the unique subgame perfect equilibrium),

each player chooses {N} at any node. There is a deviation from this ECB by S = {1, 2}
in which both of the players choose {F} instead of {N}, however the deviation is not
profitable as when player 2 is choosing between {F} and {N} he has no incentive choose
{F} over {N}, i.e. the deviating coalition is not better off at every node at which an
action changes.

4.2 Infinite Horizon Extensive Form Games

One step deviation property of ECB is not inherited in infinite horizon extensive form
games even when the game is continuous at infinity. As a result, the equivalence breaks
down. The following example of the infinitely repeated favor exchange demonstrates this.

Example 6. Infinitely Repeated Favor Exchange
Suppose that the players repeatedly play the favor exchange game in Example 5. At

each period they get the payoffs of the favor exchange game played in that period and the
payoffs are discounted with a common discount factor δ ∈ (0, 1).

There is a subgame perfect equilibrium of this game in which each player chooses {N}
in each period. But, this subgame perfect equilibrium is not an ECB for δ big enough.
This is because there is a profitable deviation by S = {1, 2} in which the players change
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to playing {F} at each node of the game. The deviation is profitable since at every node
at which S changes its action, both of the players are better off.

Note the difference between this deviation and the similar deviation in the finite game.
In the finite game, the last player to deviate had no incentive to make the deviation.
However, here there is no last player to deviate, as a result each player has an incentive
to keep his part of the deviation at every node.

The example above also shows that unlike subgame perfect equilibrium, under ECB
the one step deviation property no longer holds in infinite horizon extensive form games
with discounting. Nevertheless, the lemma below shows that ECB is a refinement of
subgame perfect equilibrium.

Lemma 2. If φ is an ECB for an extensive form game then φ is a subgame perfect
equilibrium.

With the same logic we used to prove that ECB satisfies one step deviation property
in finite horizon games, we can also show here that the existence of a finite profitable
deviation implies the existence of a profitable one step deviation. Hence, if a profitable
coalitional deviation that leads to an infinite path of play at some node at which an action
changes does not exist then the subgame perfect equilibrium should be an ECB.

Proposition 2. Let Γ be an extensive form game. Then φ is an ECB iff φ is a subgame
perfect equilibrium that is immune to coalitional deviations to any coalitional behavior φ′

where φ′(z∗) 6= φ(z∗) at some z∗ ∈ Z and there exists infinitely many z ∈ σ′(z∗) for which
φ(z) 6= φ′(z).

The proposition is useful in finding the ECBs of a wide range of infinite horizon games.
The following is an example.

Example 7. Rubinstein’s Bargaining Game (Rubinstein (1982))
Two players are negotiating on how to split a pie of size 1. In period 0, player 1

makes an offer, if player 2 accepts then the game ends and the pie is split. Otherwise the
game moves on to period 1 and player 2 makes an offer. This goes on ad infinitum. If an
agreement (x, 1− x) is reached at period t then player 1 gets a utility of δtx and player 2
gets δt(1− x), where δ ∈ (0, 1) is the common discount factor.

As is well known, this game has a unique subgame perfect equilibrium in which player
1 always proposes ( 1

1+δ
, δ
1+δ

) and accepts any proposal offering him at least δ
1+δ

. Player 2

always proposes ( δ
1+δ

, 1
1+δ

) and accepts any proposal offering him at least δ
1+δ

.
By Proposition 2, to find the ECBs of this game it is enough to check whether the

subgame perfect equilibrium is immune to coalitional deviations that lead to an infinite
path of play. As any deviation leading to an infinite path of play leads to a payoff of (0, 0)
we have that the subgame perfect equilibrium is immune to coalitional deviations and the
game has a unique ECB, which is the unique subgame perfect equilibrium of the game.

The results up to know might have left the impression that the efficiency problem,
which is obviously present in finite horizon games, might be solved in infinite horizon
games. The following example demonstrates that this is not the case.

Example 8. Multiperson Bargaining Game
This is the extension of the above model to n ≥ 3 players. n ≥ 3 players are negotiating

on how to split a pie of size 1. In period 0, player 1 makes an offer and all other players
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sequentially accept or reject the offer. If everyone accepts the game ends, otherwise in
period 1 player 2 makes an offer and all other players sequentially accept or reject. This
goes on ad infinitum. If an agreement (x1, x2, ..., xn) is reached at period t then player i
gets a utility of δtxi, where δ ∈ (0, 1) is the common discount factor.

It is well known that this game has multiplicity of subgame perfect equilibria including
ones that involve delay (see Osborne and Rubinstein (1990)). But, as any deviation
leading to an infinite path of play leads to a payoff of xi = 0 for all i ∈ N we have
that each subgame perfect equilibrium is immune to coalitional deviations. Hence every
subgame perfect equilibrium is also an ECB and the subgame perfect equilibria that involve
delay are inefficient.

5 Characteristic Function Games

A characteristic function game is a pair (N, V ), where N is the finite set of players and
for each coalition S ⊆ N , V (S) ⊆ RS denotes the set of payoff vectors achievable by
coalition S. A coalition structure P is a partition of N . A state z is a pair (x, P ) where
P is a coalition structure and x is an allocation that satisfies xS ∈ V (S) for all S ∈ P .
Let Z denote the set of all states. The core is probably the most well-known solution
concept defined for characteristic function games. It is the set of states that no coalition
can improve upon.

Definition 7. The core of the game (N, V ) is defined as

C(N, V ) = {(x, P ) ∈ Z| there does not exist S ⊆ N and yS ∈ V (S) such that yS > xS
9}

To study ECB we need to define the extended coalitional game that corresponds to a
characteristic function. I will use the convention that the nodes of the game correspond to
states, where a state is an allocation and a coalition structure. The actions have already
been implicitly defined in the definition of the core, in particular the definition assumes
that S ⊆ N can induce any allocation that is feasible for it, i.e. ((x, P ), (y, P ′), S) ∈ A(x,P )

iff yS ∈ V (S). But, this definition is not satisfactory. The reason is that S is able to
dictate the payoffs of other coalitions and the coalition structure of N \ S, which is
intuitively unreasonable.10 This is not considered in the definition of the core, because it
is a myopic concept and how the allocation is determined for the nondeviators and the
coalition structure formed by the nondeviators is inconsequential (For a more complete
discussion see (Ray and Vohra (2015)).

Building upon these I will require that for any (x, P ) ∈ Z, the set of actions satisfy
the three conditions below, which are taken from Ray and Vohra (2015).(Also see Konishi
and Ray (2003) and Koczy and Lauwers (2004), who use similar conditions.)11

1. ((x, P ), (x, P ), ∅) ∈ A(x,P )

2. If ((x, P ), (y, P ′), S) ∈ A(x,P ) then yS ∈ v(S) and if T ∈ P is such that S ∩ T = ∅
then T ∈ P ′ and xT = yT

9yS > xS if yi > xi for all i ∈ S.
10Which also leads to quite perverse results, see Ray and Vohra (2015) for a discussion.
11Note that Ray and Vohra (2015) define these conditions for an abstract game (see Section 6), whereas

here they are defined on an extended coalitional game.
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3. For all (x, P ) ∈ Z, T ⊆ N and zT ∈ V (T ) such that either zT 6= xT or T /∈ P , there
exists ((x, P ), (y, P ′), T ) ∈ A(x,P ) such that T ∈ P ′ and yT = zT .

Note that these are mild conditions that only take into consideration the drawbacks
stated in the paragraph above. The first condition states that it is possible to stay in
every state. The second condition states that when a coalition deviates from an outcome
it has to get something feasible for itself and it cannot dictate the payoffs and structures
of the coalitions that are unrelated to it. And the third condition states that if a payoff
zT is feasible for a coalition T (zT ∈ V (T )), then T should be able to get zT or if a
coalition T has not formed then T should be able to form. This third condition is already
incorporated in the definition of the core, so the only additional condition we put is
the second condition, which merely restricts a coalition from determining the unrelated
coalitions’ payoffs and structure.

Hence, an extended coalitional game that corresponds to a characteristic function
game is Γ = {N,Z, {Az}z∈Z , {ui}i∈N}, where N is the set of players, Z corresponds to all
states and {Az}z∈Z is any set of actions that satisfy the restrictions above. The only un-
defined ingredient is the utility functions on the action sequences. This might be defined
in a multitude of ways and I will look at the ECBs under the following assumptions.

Definition 8. Let h = {(xk, P k)}k=0,1...K ∈ H be a generic terminal path.12

• Myopia: For all i ∈ N and h ∈ H we have ui(h) = x1i .

• Foresight: For all i ∈ N and h ∈ H we have ui(h) = xKi if K < ∞, if K = ∞
then ui(h) = max v({i}), i.e. in case of perpetual disagreement individuals get their
endowments.

• Discounted Utilities: There is a common discount factor δ ∈ (0, 1). For all
i ∈ N and h ∈ H we have ui(h) =

∑
k=0,..,K δ

kxki +
∑

k=K+1,... δ
kxK

Under myopia, players only care about the immediate consequence of their actions.
Under foresight, players only care about the final allocation the action sequence leads to
and they dislike ongoing negotiations. Under discounted utilities, players discount the
utilities of the states they visit along an action sequence.

Given a coalitional behavior, we can define a stable state as a state at which no action
is taken, i.e. a state z is stable if φ(z) = (z, z, ∅). Let S(φ) denotes the set of all stable
states.

5.1 Myopia

The core is a myopic concept; the coalitions do not consider that their deviation might
be followed by further deviations. Therefore, we might expect a relationship between the
stable outcomes of a myopic ECB and the core. The following lemma shows that this is
indeed the case.

Lemma 3. Suppose the players are myopic and φ is an ECB.

• If (x, P ) ∈ Z is stable under φ then (x, P ) ∈ C(N, V ).

12There is a slight abuse of notation here, that I am ignoring the initiators of actions.
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• If (x, P ) ∈ C(N, V ) and (x, P ) /∈ S(φ) then φ((x, P )) = ((x, P ), (x′, P ′), T ) for
some (x′, P ′) ∈ Z and T ⊆ N , where x′i ≥ xi for all i ∈ T and x′k = xk for at least
one k ∈ T .

The lemma states that if players are myopic then any stable state under any ECB
should be a core state. Furthermore if a core state is not stable then it should be due to
indifference, that some players are taking an action although they are indifferent between
staying at the state and the immediate consequence of the action.

5.2 Foresight

Given the myopia of the core, the above lemma is not surprising. But it is surprising
that a complete core characterization can be obtained through ECB under foresight. In
particular, under foresight ECBs with a single stable outcome completely characterize the
core. It should be noted that the the characterization is only for ECBs with a single stable
outcome, therefore the core and ECB under foresight can still make different predictions
(see Example 9 below for an example of an ECB with multiple stable outcomes that are
disjoint from the core).

For any coalitional behavior φ and z ∈ Z, let T (σ(z)) denote the terminal state of
the path of play corresponding to φ at z if σ(z) is finite, otherwise let T (σ(z)) = ∅.

Proposition 3. Under foresight,

• If (x∗, P ∗) ∈ C(N, V ), then there exists an ECB φ such that T (σ(x, P )) = (x∗, P ∗)
for every (x, P ) ∈ Z.

• If φ is an ECB such that T (σ(x, P )) = (x∗, P ∗) for every (x, P ) ∈ Z then (x∗, P ∗) ∈
C(N, V ).

The proposition states that any core state can be supported as the single stable
outcome of an ECB under foresight and if a state can be supported as the single stable
outcome of an ECB under foresight then it must be a core state. Hence, ECBs under
foresight with a single stable outcome completely characterize the core.

The value of this result can be seen in the following three points. First, a minimal set
of assumptions lead to a strong result. In particular, notice that no condition is imposed
on the characteristic function game, neither superadditivity nor any other widely used
assumption is imposed. Furthermore the result is valid for both transferable utility and
nontransferable utility games. The only assumptions made are the three assumptions on
the actions, which are both weak and intuitive. Even those assumptions don’t specify
how coalitions behave following a deviation. For example, when S deviates, we don’t
make any assumption on how any coalition T, where S ∩ T 6= ∅ behaves, T may dissolve
or stay together or form any other coalition structure within itself; all of these would
satisfy our assumptions on the actions.

Second, this result states that a farsighted solution concept completely characterizes
a well-known myopic concept, the core. An allocation is in the core if there is no myopic
objection to it, but an allocation can be supported as the single stable outcome of an
ECB under foresight, if we can find a path from each outcome to the allocation such that
no coalition would be better off by deviating from these set of paths. The two arguments
are quiet different from each other, but they lead to the same predictions.
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Finally, this result complements other results in the literature that are close in spirit
to this result. Other results that show that the core incorporates foresight include Ray
(1989), Diamantoudi and Xue (2003), Konishi and Ray (2003), Mauleon, Vannetelbosch
and Vergote (2011) and Ray and Vohra (2015).13 Ray (1989) shows that core is immune to
nested objections. The results in Diamantoudi and Xue (2003), Mauleon, Vannetelbosch
and Vergote (2011) and Ray and Vohra (2015) concern the farsighted stable set (see
Section 6.1.2). Whereas Konishi and Ray (2003) study a real time dynamic process when
the discount factor goes to 1.

Unlike any of these results, Proposition 3 is a complete characterization of the core
in any characteristic function game. The reasons why the above results do not provide
a complete characterization differ. Most of the above papers are about the farsighted
stable set (see Section 6.1.2). The result above shows that the only reason they do not
completely characterize the core is because external stability in the farsighted stable set
is defined with strict preference instead of weak preference. That is, as shown in the proof
of the theorem (see Appendix), in any characteristic function game there exists a path
from any state to any core state such that every coalition moving along the path weakly
prefers the final state to the state it replaces. However, this weak preference cannot be
replaced with strict preference and therefore the core state might not satisfy external
stability with respect to the indirect dominance relation.

The concept Konishi and Ray (2003) uses is more related to the next section as they
consider a dynamic process in which the utilities are discounted. There we will see that
their core characterization partly relies on not allowing for some reasonable deviations.

Proposition 3 implies that if a characteristic function game has an empty core, then
we cannot find an ECB for that game with a single stable outcome under foresight. But
this does not mean that an ECB does not exist in such a game. Below is an example of
an ECB under foresight defined for a characteristic function game with an empty core.

Example 9. There are 3 players. V (S) = 0 if |S| = 1 and V (S) = {x|
∑

i∈S xi ≤ 1}
otherwise. The core of this game is empty. Now, I will describe an ECB φ for this
game. Let x1 = (0, 1

2
, 1
2
), x2 = (1

2
, 0, 1

2
) and x3 = (1

2
, 1
2
, 0). Let P1 = {{1}, {2, 3}},

P2 = {{1, 3}, {2}} and P3 = {{1, 2}, {3}}. Finally define zi = (xi, Pi) for i = 1, 2, 3. If z
is a state where player i gets more than 1

2
, then φ contains the action from z to zi. If z

is a state where nobody gets more than 1
2

and z 6= zi for i = 1, 2, 3, then φ contains the
action from z to z1. z1, z2 and z3 are stable. It is easy to see that φ is an ECB under
foresight.

Note the logic underlying the ECB in this example: z1 is not in the core, because
S = {1, 2} has a profitable deviation, say to (1

4
, 3
4
, 0). But, this is a myopic deviation, if

everybody is expected to act as the above ECB specifies then player 2 should be afraid to
make this deviation knowing that he would be punished by an outcome (z2) which gives
him 0, while increasing the payoff of his co-deviator (player 1) to 1

2
.

5.3 Discounted Utilities

Analyzing the ECB under the assumptions of myopia and foresight is particulary simple,
as under these assumptions players only care about a certain state on each path of play.

13Green(1974), Feldman(1974), Koczy and Lauwers (2004) and Sengupta and Sengupta(1996) show
how myopic objections lead to the core in specific environments. Although these papers are also related,
they are fundamentally different from the current paper, since players are not assumed to be farsighted.
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When there is a discount factor, this is no longer the case. Nevertheless, it is easy to see
that Lemma 3 is still valid if δ → 0, but the same cannot be said about Proposition 3.

Example 10. There are 3 players. V (S) = 0 if |S| = 1, V ({1, 2, 3}) = (2, 2, 2),
V ({1, 2}) = (10, 1), V ({2, 3}) = (10, 1) and V ({1, 3}) = (1, 10). In this game the core
is unique and is composed of (x,N), where x = (2, 2, 2). But, it cannot be supported as
the single stable outcome of an ECB when δ → 1. The reason is that when players cy-
cle between the coalition structures (12, 3), (23, 1) and (13, 2) everybody receives a higher
payoff than the one they get under the core allocation.

This example also demonstrates a feature of Konishi and Ray (2003)’s result. In
the above example, under their solution concept (see Section 6.2 for the definition) the
core allocation can be supported as the unique stable outcome when δ → 1. This is
because, under their solution concept players cannot coordinate to impose the deviation
that results in the preferred cycle. Hence their core characterization partially relies on
ruling out some intuitive deviations.

Finally, the other part of Proposition 3 still holds when δ → 1.

Proposition 4. Suppose players use a common discount factor δ ∈ (0, 1) to evaluate the
utility of a path. If δ → 1 and if φ is an ECB such that T (σ(x, P )) = (x∗, P ∗) for every
(x, P ) ∈ Z then (x∗, P ∗) is in the core.

6 The Abstract Game

Most of the static and the dynamic solution concepts discussed in the Literature Review
are defined on the abstract game. ECB can be defined on the abstract game both as a
static concept and a dynamic concept. In this section we will do this and compare the
resulting ECB to other solution concepts.

An abstract game is defined as Γ = {N,Z, {vi}i∈N , {
S−→}S⊆N,S 6=∅} (see, for example,

Chwe (1994), Rosenthal (1972) and Xue (1998)). Where N is the set of players, Z is the

set of states, {vi} is player i’s utility function defined on the set of states and { S−→}S⊆N,S 6=∅
are effectiveness relations defined on Z. The effectiveness relation { S−→} describes what

coalition S can do at every state, i.e. a
S−→ b for a, b ∈ Z iff when a is the status quo

coalition S can change state a with state b.
The definition of an abstract game and an extended coalitional game are similar, the

major difference being that in an extended coalitional game utilities are defined over the
paths, whereas under an abstract game utilities are defined on the nodes (states).

A simple way to see the impact of this difference is to look at an infinite horizon
extensive form game. We have already seen that this is an extended coalitional game,
but it is not an abstract game. The reason is that the actions (or effectiveness in the
language of the abstract game) are defined over non-terminal nodes, hence the set Z is the
set of nonterminal nodes and under an abstract game utilities are defined over Z. But in
an infinite horizon extensive form game there are no utilities defined on the intermediate
nodes, they are defined over paths just like in an extended coalitional game.

For finite extensive form games, Xue (1998) uses the trick of assigning a very low
utility to nonterminal nodes, thereby forcing the players to move to terminal nodes. But

22



even such a trick is not applicable in an infinite horizon game. Hence an infinite horizon
extensive form game is not an abstract game.14

All of the ingredients of an abstract game admit an obvious translation to the extended
coalitional game except for the utilities. In particular the set of players and the set of
states is the same and the set of actions correspond to the effectiveness relation. Hence, let
{N,Z, {Az}z∈Z , {ui}i∈N} be the extended coalitional game corresponding to an abstract

game, where (z, z, ∅) ∈ Az for all z ∈ Z and (z, x, S) ∈ Az iff z
S−→ x for S 6= ∅.

For the utilities, the static approach assumes that players only care about the final
states their actions lead to, which corresponds to foresight defined in Section 5. Whereas
the dynamic approach assumes that players care about the discounted payoff of all the
states they visit along a path, which corresponds to discounted utilities on the paths.For
convenience, the definitions are replicated below.

Definition 9. Let h = {(zk, zk+1, Sk)}k=0,1...K ∈ H be a generic terminal path.

• Foresight: For all i ∈ N and h ∈ H we have ui(h) = vi(zK) if K <∞, if K =∞
then ui(h) = −∞, i.e. players dislike ongoing negotiations.

• Discounted Utilities: There is a common discount factor δ ∈ (0, 1). For all
i ∈ N and h ∈ H we have ui(h) =

∑
k=0,..,K δ

kvi(zk) +
∑

k=K+1,... δ
kvi(zK)

I will call the ECB corresponding to the assumption of foresight, the farsighted ECB
(FECB) and the one corresponding to discounted utilities, the dynamic ECB (DECB).
Both approaches will be considered in order. The analysis focuses on the relationship of
the concepts to the ECB. For a treatment that shows the various strengths and weaknesses
of the concepts see Herings, Mauleon and Vannetelbosch (2004), Dutta and Vohra (2015),
Ray and Vohra (2014) and Xue (1998).

6.1 The Static Approach

6.1.1 Largest Consistent Set (LCS)

LCS, developed by Chwe (1994) is a conservative solution concept, it tries to rule out
with confidence. Its definition is based on the indirect dominance relation on the set of
states.

Definition 10. Indirect Dominance
x ∈ Z indirectly dominates y ∈ Z (x � y) if there exists x0, x1, ...xn ∈ Z and

S0, S1, S2, ..., Sn−1 such that x0 = y, xn = x, (xi, xi+1, Si) ∈ Axi and vj(xn) > vj(xi) for
all j ∈ Si, for all i = 0, ..n− 1.

Definition 11. Largest Consistent Set
A set V ⊂ Z is consistent if a ∈ V iff for all d, S such that (a, d, S) ∈ Aa, there exists

e ∈ V , where d = e or e� d, such that vi(a) ≥ vi(e) for some i ∈ S. The consistent set
that contains all other consistent sets is called the largest consistent set.

14One can take the states as strategy profiles and then study the game as an abstract game. But this
would be done at the expense of information about the game.
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a (1, 1) b (0, 0) c (0, 2)

d (2, 8)

{1} {2}

{1, 2}

Figure 6: LCS differs from FECB (Xue (1998))

Sometimes LCS is unable to make obvious predictions as shown in the example in
Figure 6 taken from Xue (1998). In this example the LCS is {a, c, d}. According to LCS,
a is stable because under the assumptions of the LCS players are pessimistic and player
1 is afraid that player 2 will move to state c following state b. We see that instead of
considering the best course of action player 2 has at state b, player 1 forms an unreasonable
expectation based on a behavioral attitude (pessimism) over player 2’s actions. It is easy
to see that FECB makes the ‘correct’ prediction in this game.15

Given that LCS is a conservative solution concept, one might expect the stable states
under the LCS to contain the stable states of an ECB. The following proposition states
that if there is no indifference then this is indeed the case.

Definition 12. No Indifference (NI)
An abstract game Γ satisfies NI if for all i ∈ N and z, z′ ∈ Z, where z 6= z′, we have

vi(z) 6= vi(z
′).

Proposition 5. Let Γ be an abstract game that satisfies NI. If φ is an FECB of Γ then
S(φ) ⊆ LCS.

The solution concepts in the static approach are defined using the indirect dominance
relation which uses strict preference. Whereas under the FECB coalitions might take
some actions even if they are indifferent, so we will always see a difference between these
concepts and the FECB due to the different ways with which they treat indifference. I
do not view this difference as essential. Therefore, not to bump on it again and again,
from now on I will assume that the environment satisfies NI.

6.1.2 Farsighted Stable Set (FSS)

Farsighted stable set (see Harsanyi (1974) and Chwe (1994)) is basically von Neumann
and Morgenstern’s stable set defined with the indirect dominance relation.

Definition 13. Farsighted Stable Set (FSS)
A set V ⊆ Z is an FSS if

• For any x, y ∈ V we have x 6� y

• For any y /∈ V , there exists x ∈ V such that x� y

There is no relation between the FECB and the FSS. The example in Figure 7 shows
that some stable outcomes of the unique FSS might be unstable in the unique FECB and
some stable outcomes of the unique FECB might be unstable in the unique FSS.

15The unique ECB φ specifies φ(a) = (a, b, {1}) and φ(b) = (b, d, {1, 2}).
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x (0, 0, 0)) a (1, 1, 1) b (−1,−1,−1) c (−2, 8,−5)

d (2, 2,−6)

{3} {1} {2}

{1, 2}

Figure 7: FSS differs from FECB

The reasonable prediction and the unique FECB φ of this game specifies φ(b) =
(b, c, 2), φ(a) = (a, a, ∅) and φ(x) = (x, a, 3). However under the FSS a is not stable,
because 1 optimistically and unreasonably believes that 2 will move to d with him, but
this in turn makes x stable under the unique FSS. Hence, FSS = {x, c, d}. The problem
is that under FSS players rely on unreasonable expectations of other players’ behavior
instead of forming consistent expectations and reacting optimally to it. It is easy to see
that FECB avoids this drawback of the FSS.

Dutta and Vohra (2015) tries to solve the problems associated with the FSS by incor-
porating the solution concept with consistent expectations and the idea of maximality.
Surprisingly the exercise results in a solution concept that is very similar to the FECB.
Now we will look into this.

6.1.3 REFS and SREFS

REFS and SREFS (see Dutta and Vohra (2015)) blend consistent expectations with
farsighted stability and one-step deviations to embed the farsighted stable set with the
idea of maximality. The difference between REFS and SREFS is that in the latter a
deviation is defined as a stronger concept. As the more related concept is SREFS, in
this section I will restrict attention to SREFS. Using coalitional behavior rather than
expectations we can restate their stability concept in the language of our framework.

Definition 14. SREFS (Dutta and Vohra (2015))
A set V ⊆ Z is an SREFS if there exists an acyclic coalitional behavior φ such that

S(φ) = V and

(IS) If x ∈ V then there does not exist y, S such that (x, y, S) ∈ Ax and vi(T (σ(y))) >
vi(x) for all i ∈ S .

(ES) If x /∈ V then σ(x) is an indirect dominance path.

(M) If x /∈ V and if T is the initiator at x then there does not exist y ∈ Z and F ⊆ N
with T ∩ F 6= ∅ and (x, y, F ) ∈ Ax such that vi(T (σ(y))) > vi(T (σ(x))) for all
i ∈ F .

The first and second conditions are interpreted as internal and external stability con-
ditions with respect to the expectation. Whereas the third condition requires optimality
of the move at any node x, where optimality is conditioned on a one-step deviation.

It turns out that under the weak assumption that actions are monotonic, in the sense
that whenever a coalition S is able to take a certain action then any coalition T containing
S can also take this action, FECB is equivalent to SREFS.
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Definition 15. Monotonicity of Actions (MOA)
We say that an extended coalitional game satisfies MOA if whenever (z, z′, S) ∈ Az

for some z ∈ Z we also have that (z, z′, T ) ∈ Az for all T ⊇ S.

Proposition 6. Let Γ be an abstract game that satisfies NI and MOA then

• If V is an SREFS and φ is the coalitional behavior that supports it then φ is an
FECB.

• If φ is an FECB then S(φ) is an SREFS supported by φ.

This shows that the conditions of internal and external stability with the one-step
deviation condition rules out every possible profitable deviation, even those that involve
multiple actions. One of the reasons why this is the case is that FECB satisfies one step
deviation property (see Section 8.1). Therefore, a static solution concept defined this way
doesn’t really have to consider complicated deviations.

6.2 The Dynamic Approach

EPCF (See Konishi and Ray (2003) and Ray and Vohra (2014)) is the main solution
concept in the dynamic approach.16 In this section I will compare the DECB to the
EPCF.

6.2.1 EPCF

EPCF also uses consistent expectations just like SREFS and ECB. The difference of
EPCF and SREFS (apart from one being a static and the other being a dynamic concept)
is that the former is directly defined as an expectation (a coalitional behavior) that is
immune certain deviations. Using coalitional behavior, we can restate the definition of
EPCF under NI in the language of our framework.17

Definition 16. EPCF
A (deterministic) EPCF18 is a coalitional behavior φ such that for all x ∈ Z

• if φ(x) = (x, y, S), where y 6= x then σ(y) �S σ(x) and there does not exist z with
(x, z, S) ∈ Ax and σ(z) �S σ(y).

• if x is such that there exists y, S with (x, y, S) ∈ Ax and σ(y) �S σ(x) then φ(x) 6=
(x, x, ∅)

where for any z, z′ ∈ Z, σ(z) �i σ′(z) iff the discounted utility of the former is greater.

16Although similar and they have the same name, the concepts in these two papers are different. In
particular the EPCF of Ray and Vohra (2014) requires more information, such as a protocol, than the
EPCF of Konishi and Ray (2003). That is why I will compare the DECB to the EPCF of Konishi and
Ray (2003) which is defined on the abstract game.

17The assumption of NI is needed here for an altogether different reason. In particular in the original
definition of EPCF, Konishi and Ray allow a coalition to move at state x even if it is indifferent between
moving or staying at x. But they do not allow this if there exists a coalition that can move at x and
that would strictly improve by taking an action at x. Whereas under a DECB this is also allowed.

18Konishi and Ray (2003)’s EPCF can also be stochastic, as mixing is not included in the definition
of an ECB I restrict attention to deterministic EPCFs.
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a (1, 0) b (0, 5) c (5, 0) d (0, 1)

{1}

{1}

{2}

{2}

Figure 8: Profitable Deviation to a Cycle

The definition is similar to the definition of DECB with the major difference being
that this definition does not consider deviations that involve multiple actions.19 Unlike
FECB in the static approach, DECB does not satisfy the one step deviation property.
This means that the restriction to one-step deviations in the above definition is with loss
of generality. In particular, there might exist a deviation to a cycle that might make the
deviators better off.

An example is given in Figure 8, here at node b, player 1 moves to a and settles for a
payoff of 1. Similarly player 2 moves from c to d and settles for a payoff of 1. There is no
profitable one-step deviation from this coalitional behavior for δ big enough. But, there
is a profitable deviation by the coalition {1, 2} to the cycle. Hence for δ big enough the
depicted coalitional behavior is not a DECB, but it is an EPCF.

Finally, it is easy to establish that every DECB is an EPCF. The following proposition
summarizes the results.

Proposition 7. If φ is a DECB then it is an EPCF, but an EPCF may not be a DECB.

6.3 The Static, the Dynamic and the Noncooperative Approach

Propositions 2, 6 and 7 bring the noncooperative approach and the static and the dynamic
approaches together. In particular they show that ECB can be used to unify all of these
three approaches; as it can be defined as a solution concept in each of these approaches and
also because it is closely related to a solution concept in each of these three approaches.
Hence, these propositions substantiate the claim made in the Literature Review that ECB
stands where the noncooperative, the static and the dynamic approaches meet.

7 Applications

Up to now, we looked at general classes of games and the relations ECB engenders with
the popular solution concepts in these classes. In this section, we will look at how ECB
can be used in applications. To this end, I will define a class of games, beeline games,
and I will characterize the ECBs of beeline games and finite acyclic games.

These two classes of games can be used to analyze a wide range of situations includ-
ing network formation (Aumann and Myerson (1988)), sequential formation of binding
agreements (Bloch (1996), Ray and Vohra (1999)), dynamic club formation (Barbera,
Maschler and Shalev (2001), Roberts (2015)) and various political games (Acemoglu,
Egorov and Sonin (2008,2012)). Most of these cited works have used subgame perfect
equilibrium and its refinements to study the problem at hand. Therefore, the authors

19Another difference is that the definition of the deviations are in general weaker under EPCF. Fur-
thermore, Konishi and Ray (2003) restrict attention to games with a finite number of states.
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needed to complement the description of the game with the rules of coalition formation
and in most cases they needed to refine the concept of subgame perfect equilibrium to
get reasonable predictions.

This inevitably brings a level of arbitrariness. The analysis in this section shows that
this is unnecessary, that there is a simpler and consistent way to approach these problems
without specifying an arbitrary negotiation procedure and without using a wide range of
different solution concepts. In particular, ECB can be directly applied to these problems
and it does not need the description of the negotiation procedure to make a prediction.

7.1 Beeline Games

The analysis of beeline games has been especially influenced by Acemoglu, Egorov and
Sonin (2008, 2012). In the latter of these, the authors provide a general framework to
study dynamic collective decisions, a situation ECB is developed for. With the use of
ECB we can repeat the exercise they do in a more general class of games, namely beeline
games.

Beeline games are finite games which take the convention that the nodes correspond
to states. The defining feature of beeline games is that there always exists a shortcut
between two nodes that are reachable from each other. More precisely, whenever node
y is reachable from node x through a path initiated by S ⊆ N , then y is also reachable
from x through a single action whose initiator is S.

Definition 17. Beeline Games
Let Γ be an extended coalitional game. Γ is a beeline game if Z is finite, (z, z, ∅) ∈ Az

for all z ∈ Z and for all x, y ∈ Z whenever y is reachable from x through a path initiated
by S ⊆ N we also have that (x, y, S) ∈ Ax.20

The definition of the game leaves the preferences out. In the particular beeline game
Acemoglu, Egorov and Sonin (2012) consider, they assume that players have utilities
defined over the set of states (nodes) and the utility of a path is the discounted utility of
the states visited along the path, where the common discount factor δ is arbitrarily close
to 1, i.e. δ → 1. Furthermore, they assume a cost to taking actions (changing states)
such that whenever an action is taken players receive a utility lower than the utility of
any state.

I will use a simpler, but equivalent way to define the preferences. In particular, the
utility of each finite terminal path will be associated with a single utility corresponding
to the final node of the terminal path minus the length of the path times ε, where ε is
an arbitrarily small positive number. And each infinite length terminal path will have a
utility of −∞. It is easy to see that this specification will lead to the same predictions
as the above specification.21

Let vi denote the utility of i ∈ N over the set of nodes Z and let ui denote the utility
over terminal paths. Then we have that ui(h) = limε→0{vi(T (h)) − εL(h)} if h is of
finite length, otherwise ui(h) = −∞. Where L(h) denotes the length of path h and T (h)
denotes the final node of path h.

20y is reachable from x through a path initiated by S if there exists z1, z2, ..., zn and S1, S2, ..., Sn−1
such that z1 = x, zn = y, S1 = S and (zi, zi+1, Si) ∈ Azi for all i = 1, ..., n− 1

21In both of the specifications, infinite paths provide the lowest utility and finite paths can be compared
based on the terminal node if they have terminal nodes that provide different utilities, otherwise shorter
paths are always preferred.
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Figure 9: Example 11

There are many situations encountered in the literature that can be represented as a
beeline game, the examples below demonstrate this.

Example 11. (Acemoglu, Egorov and Sonin (2008)) There is a society composed
of N = {1, 2, .., n}, where each individual i ∈ N is endowed with a political power γi ≥ 0.
Coalition S ⊆ T is said to be winning within coalition T if

∑
i∈S γi > α

∑
i∈T γi, where

α ≥ 1
2
. For any coalition T ⊆ N , let WT denote the set of winning coalitions within T .

At the start of the game the society is intact. Any coalition S that is winning within
N can choose to eliminate any T ⊆ N . But once T is eliminated, any coalition that is
winning within N \T can choose to eliminate any set of remaining players. This continues
until a self-enforcing coalition forms. vi is defined over all subsets of N for all i ∈ N .22

The game can be readily formalized as an extended coalitional game, where the nodes
correspond to the set of remaining players and the actions are represented with the arcs.
This is done in Figure 9 for the case where N = {1, 2, 3}, γ1 = 2, γ2 = γ3 = 1 and α = 1

2
.

Example 12. (Barbera, Maschler and Shalev (2001)) There is a society N =
{1, 2, .., n} and a club F ⊆ N . Everybody in the society wants to be a part of the club.
Any member of the club i ∈ F can admit new members S ⊆ N \ F to the club. Once
the new members are admitted, any member of the expanded club can admit any set of
individuals that are not a part of the club. This continues until a stable club forms. vi is
defined over supersets of F for all i ∈ N .23

22 Acemoglu, Egorov and Sonin (2008) make the assumption that an individual cannot eliminate
himself: ‘for simplicity, we assume that an individual cannot propose to eliminate himself’ (Acemoglu,
Egorov and Sonin (2008), p.8). I do not make this assumption.

23In their model there is a fixed number of periods in which admission decisions can be made. I assume
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(b) Example 13

The game can be represented similar to Example 11. The representation of the game
when N = {1, 2, 3} and F = {1} is available in Figure 10a.

Example 13. (Acemoglu, Egorov and Sonin (2012)) There is a finite set of states
Z. Associated with each state s is a set of winning coalitions Ws. The game starts at an
exogenously given state s0. At s0 any coalition S ∈ Ws0 can choose a new state s′ ∈ Z \s0
to transition to. Following this any S ∈ Ws′ can choose another state to transition to.
This continues until a stable state is reached. vi is defined over Z for all i ∈ N .

This game can be represented with a complete directed graph, where the nodes corre-
spond to the states and the arcs are labeled with the winning coalitions that can change the
state. This is done in Figure 10b for the case when Z = {s1, s2, s3}, Ws1 = S, Ws2 = T
and Ws3 = F .24

Note that none of the examples above is a special case of another. But they are all
beeline games. I will start with preliminary results. For x, y ∈ Z, x �D y (x dominates
y) if there exists S ⊆ N with (y, x, S) ∈ Ay and v(x) >S v(y).25 We say that a beeline
game satisfies acyclicity of domination (AOD) if the relation �D does not contain any
cycles.26

AOD is satisfied in games with veto players, for example the games in which the
transition rule is dictatorship or unanimity. Furthermore it is also satisfied in a general
class of games, namely all acyclic games.27

The following lemma states that in any beeline game, the prediction will be reached
in one step and in games that satisfy AOD, the stable outcomes of any ECB will be the
same.

Lemma 4. Let φ be an ECB of a beeline game Γ.

there is no such restriction. If we put that restriction then the game is not a beeline game, but it will
be a finite acyclic game, see Section 7.2.

24The example due to Roberts (2015), discussed in the Introduction, is a special case of this.
25We have v(x) >S v(y) if vi(x) > vi(y) for all i ∈ S.
26I.e. for any x1, x2, ..., xn ∈ Z, whenever x1 �D x2 �D .... �D xn we have x1 6= xn
27This is because if the domination relation has a cycle then each state within the cycle is reachable

from each other. But then the game is not acyclic.
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• In φ the prediction is always reached in at most one step, i.e. L(σ(z)) ≤ 1 for all
z ∈ Z.

• If φ′ is another ECB for Γ, then φ(z) = (z, z, ∅) iff φ′(z) = (z, z, ∅).

We are ready to provide an algorithm that finds all of the ECBs of a beeline game
that satisfies AOD. Suppose that the game satisfies AOD. Let Z0 = argmax�DZ, Z1 =
argmax�D{Z \ Z0} and so on. Note that as �D is acyclic a maximal element exists as
long as the set is nonempty. Continue until ZK , where ZK+1 = ∅. As Z is finite, ZK is
well defined.

Proposition 8. φ is an ECB of a beeline game Γ satisfying AOD iff φ can be obtained
with the following procedure.

1st Step: Defining the stable outcomes S.

Let S0 = Z0. Suppose Sn is defined for all n < k. Then for x ∈ Zk define

µ(x) = {z ∈ {∪l<kSl}|z �D x}

Let Sk = {x ∈ Zk|µ(x) = ∅}. Continue until SK is defined. Let S = ∪i=0,1,..,KSi.
2nd Step: Defining φ.

Take any x ∈ Z. Let φ(x) = (x, x, ∅) iff x ∈ S. Otherwise let φ(x) = (x, z, S) for
some z, S where z ∈ S, v(z) >S v(x) and there does not exist z′ ∈ S, j ∈ S, T ⊆ N with
(x, z′, T ) ∈ Ax, v(z′) >T∪{j} v(z).

The algorithm is a simple recursive algorithm that pins down all of the ECBs of
a beeline game satisfying AOD. It starts with the nodes that are undominated, which
need to be stable as there is no state that is reachable from them that would make the
initiators better off. From there it moves on to the nodes that are only dominated by an
undominated node. Since these nodes are dominated by a stable node, they are unstable.
This continues until the set of stable nodes is defined. Once the set of stable nodes is
defined then we can assign a prediction to every nonstable state, by making sure that
there exists no deviation from this prediction.

Note that existence is not guaranteed, see Section 8.2 for examples of beeline games
with no ECB. Finally, I will solve Examples 13 and 11 to demonstrate the algorithm.

Dynamics and Stability of Constitutions, Coalitions and Clubs (Acemoglu et
al. (2012))

Here, I will solve Example 13 defined above. Acemoglu, Egorov and Sonin (2012) keep
the following assumption throughout their paper.

Assumption 1. For any x, y, z ∈ Z we have that

1. If S, T ∈ Wx then S ∩ T 6= ∅.

2. If S, T ∈ Wx, v(y) >S v(x) and v(z) >T v(y) then z >D x.

3. The game satisfies AOD.
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The first condition rules out the possibility that two disjoint coalitions are winning
in the same state. The second condition imposes that if y dominates x and if a winning
coalition in x prefers z to y then z also dominates x. Finally, the last condition is the usual
acyclicity condition. Under these conditions, Proposition 8 can be restated as follows.

Corollary 1. φ is an ECB of Example 13 under Assumption 1 iff φ can be obtained
with the following inductive procedure. For any z ∈ Z0, let φ(z) = (z, z, ∅). Suppose φ is
defined for all z ∈ Zn for all n < k. Then for x ∈ Zk define

µ′(x) = {z ∈ {∪l<kZl}|φ(z) = (z, z, ∅) and z �D x}

Let φ(x) = (x, x, ∅) if µ′(x) = ∅. Otherwise let φ(x) = (x, z, S) for some z, S where
z ∈ µ′(x), v(z) >S v(x) and there does not exist T ∈ Wx, y ∈ µ′(x) with v(y) >T v(z).

To see that Proposition 8 reduces down to Corollary 1, first notice that the set of
stable states is obtained exactly the same way in both. So, we only need to check the
2nd Step of Proposition 8. First suppose that φ(x) = (x, z, S) satisfies the conditions
in Proposition 8, but violates the condition in Corollary 1. Then there exists T ∈ Wx,
y ∈ µ′(x) with v(y) >T v(z). Note that by Assumption 1, T ∩ S 6= ∅. But then the
condition in Proposition 8 is violated, because there exists j ∈ S (j ∈ S ∩ T ), T ⊆ N
and y ∈ S with (x, y, T ) ∈ Ax, v(y) >T∪{j} v(z).

For the other way assume φ(x) = (x, z, S) for some z, S where z ∈ µ′(x), v(z) >S v(x)
and there does not exist T ∈ Wx, y ∈ µ′(x) with v(y) >T v(z). Towards a contradiction
assume that (x, z, S) does not satisfy the condition in Proposition 8. Then there exists
z′ stable, j ∈ S with (x, z′, T ) ∈ Ax, v(z′) >T∪{j} v(z). Since (x, z′, T ) ∈ Ax, we have
T ∈ Wx. By the second condition in Assumption 1, we also have that z′ ∈ µ′(x), a
contradiction.

The characterization is the same as the one obtained by Acemoglu, Egorov and Sonin
(2012). What is more is that we can also use Proposition 8 to come up with the character-
ization they obtained for Example 11, which is independent of Example 13. In particular,
Example 13 allows for any transition, whereas in Example 11 only nested deviations by
coalitions are permitted.

Coalition Formation in Nondemocracies (Acemoglu et al. (2008))

Here, I will solve Example 11 defined above. Acemoglu, Egorov and Sonin (2008) assume
that vi(S) depends positively on i’s relative strength in S. To simplify the problem I
will use the following particular function, which satisfies this assumption. Note that the
result would still go through if we assume the more general form that they do.28 Let
γ∅ = 0 and vi(S) =

γS∩{i}
γS

for all i ∈ N and S ⊆ N with S 6= ∅.
Let C denote the set of all coalitions in N and let CX denote the set of coalitions that

are a subset of X for some X ⊆ N . For any natural number k let Ck = {X ∈ C||X| = k}.
Since the game is acyclic, it satisfies AOD, so we can use Proposition 8 to characterize
the ECBs of the game.

The following corollary follows from Proposition 8. The proof, which is in the Ap-
pendix, is similar to the argument used above to show Corollary 1.

28Actually nothing in the argument changes if we look at the more general form, nevertheless I chose
to stay with this specific functional form as it is intuitive and easy to state.
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Corollary 2. Any ECB φ of Example 11 can be obtained with the following inductive
procedure. If X ∈ C1 then let φ(X) = (X,X, ∅). If φ(S) has been defined for all S ∈ Cn

for all n < k then for X ∈ Ck let

M(X) = {Z ∈ CX \ {X}|Z ∈ WX and φ(Z) = (Z,Z, ∅)}

Let φ(X) = (X,X, ∅) if M(X) = ∅, otherwise let φ(X) = (X,T, T ′) for some
T ∈ arg minA∈M(X) γA, where T ′ is any coalition that satisfies T ′ ⊆ T and T ′ ∈ WX .
Proceeding inductively φ is defined for the whole game.

The characterization provided above is exactly the same as the characterization pro-
vided by Acemoglu, Egorov and Sonin (2008).

Many political situations are similar to the ones studied here in the sense that the
negotiation process and the rules with which coalitions form is not well defined, but
the general structure of the game is defined. In such situations ECB can be used quite
naturally without the need to complement the description of the game with the rules of
coalition formation. Furthermore, as the solutions to Examples 11 and 13 point to, it
should be much easier to use ECB to solve these problems than to define the exact rules
of negotiation and using a noncooperative solution concept.

7.2 Finite Acyclic Games

Another class of games for which we can find an algorithm that characterizes the ECBs
is finite acyclic games. The following examples demonstrate some situations that can be
modeled as a finite acyclic game.

Example 14. (Finite Extensive Form Games) Any finite extensive form game of
perfect information.

Example 15. (Cournot Oligopoly and Binding Agreements) There are n identical
firms producing output at a fixed cost c. The linear market demand is given by p = A−by,
where y is the aggregate output, A and b are constants. At the start of the game any group
of firms S can bindingly come together and form a cartel. Once S is formed, no firm can
leave or join this cartel. Following this, any group of firms in N \ S can bindingly form
a cartel. This continues until a partition P of N forms.

Utilities are defined over partitions of N . Each cartel plays noncooperatively with
other cartels, and share the profits equally among its members. That is, the payoff of

i ∈ S ∈ P is (A−c)2
b|S|(|P |+1)2

, where |P | is the number of coalitions in partition P . This game

has been analyzed by Bloch (1996) and Ray and Vohra (1999).
Figure 11 demonstrates the game for n = 3. Note that, ‘no action’ is not a possible

action at any node, therefore the game moves onto terminal nodes. Both Bloch (1996)
and Ray and Vohra (1999) make the assumption that each firm can commit to remain
alone, I make the same assumption.

Example 16. (Network Formation) N is the finite set of players. A network is an
undirected graph g with the node set N . Let G be the set of all networks. Each individual
has a utility defined over G. The game starts at the empty network. Any two players
might agree to form links between themselves, once the link is formed any other two players
can form a link. This goes on until a stable network emerges. Once a link is formed, it
cannot be severed. Aumann and Myerson (1988) study this game.
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Figure 11: Cournot Oligopoly

In these games, one step deviation property of the ECB holds. This is because any
profitable deviation leads to a finite acyclic path and hence can be replaced with a prof-
itable one step deviation by Proposition 11. This implies that we can find all of the ECBs
by working backwards. Now, I will formalize this.

Let Z0 denote the set of exogenously stable nodes of Γ, i.e. z ∈ Z0 iff Az = {z, z, ∅}.
Let Z1 ⊆ Z \ Z0 denote the set of nodes from which only nodes in Z0 are reachable.
Suppose Zk is defined for all k ≤ n then let Zn+1 ⊆ Z \ {∪i=1,..,nZi} be the set of nodes
from which only the nodes in {∪i=1,..,nZi} are reachable. Stop doing this when all nodes
are exhausted, lets denote the last nonempty set ZK , since the game is finite we will
eventually stop.

Z0, Z1, .., ZK is partition of Z such that no z ∈ Zi is reachable from any z ∈ Zj where
j < i. The following proposition provides an algorithm that characterizes the ECBs
of a finite acyclic game. For any z ∈ Z, let N(z) denote the nodes adjacent to z, i.e.
N(z) = {z′ ∈ Z|(z, z′, S) ∈ Az for some S ⊆ N , where S 6= ∅}.

Proposition 9. φ is an ECB of the finite acyclic game Γ iff φ can be obtained with the
following procedure.

For any z ∈ Z0, let φ(z) = (z, z, ∅). Suppose φ is defined for all z ∈ Zn for n < k.
Then for x ∈ Zk define

µ(x) = {z ∈ N(x)|{(x, z, S), σ(z)} �S (x, x, ∅) for some S ⊆ N }

and
µ′(x) = {z ∈ N(x)|{(x, z, S), σ(z)} �S (x, x, ∅) for some S ⊆ N }29

if (x, x, ∅) ∈ Ax, otherwise let µ(x) = µ′(x) = N(x).

29x �S y if x �i y for all i ∈ S and x �S y if x �i y for all i ∈ S.
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Let φ(x) = (x, x, ∅) if µ′(x) = ∅. Otherwise let φ(x) = (x, z, S) for some z, S. Where
(i) if z = x then µ(x) = ∅, (ii) if z 6= x then z ∈ µ′(x), (iii) {(x, z, S), σ(z)} �S (x, x, ∅)
if (x, x, ∅) ∈ Ax and (iv) there does not exist z′ ∈ Z, T ⊆ N , i ∈ S with (x, z′, T ) ∈ Ax
and {(x, z′, T ), σ(z′)} �T∪i {(x, z, S), σ(z)}.

Note that the algorithm reduces down to backward induction in finite extensive form
games. In more general finite acyclic games the idea is the same, we start at the exoge-
nously stable nodes and then we move our way up. Finally, we can use the algorithm to
find the ECBs of the Cournot game in Example 15.

Cournot Oligopoly with Binding Agreements

Here, I will solve the Cournot game in Example 15. The problem and the extended coali-
tional game corresponding to the problem is described above. Any z ∈ Z is a partition of
some S ⊆ N , where each coalition in the partition denotes a binding agreement to form
the corresponding cartel. Let |z| denote the number of agreements in z and let N \ z be
the set of players who have not made an agreement yet.

Note that each node for which |N \ z| = 0 or |N \ z| = 1 is a terminal node as the
whole partition of N is determined in such nodes. So, we start at the nodes z for which
|N \ z| = 2, as only terminal nodes are reachable from these. For any such node the
only possible actions are either a player will declare that it will remain isolated or the
two remaining players will form a cartel. By the symmetry of the game, the action that
maximizes the payoff of one of the remaining players will be taken. Once we assign a
prediction to each such node, we can move on to any node z for which |N \ z| = 3.
We can continue this until we reach the root of the game, i.e. the node z∗ for which
|N \ z∗| = n, at which point the ECB will be defined. The following proposition pins
down the prediction of ECBs in this example, for details see the proof in the Appendix.

Proposition 10. Let Γ be a Cournot game corresponding to Example 15, then an ECB
exists for Γ and if P ∗ is the predicted outcome then P ∗ = {S∗, {i}i/∈S∗} where |S∗| is the
first integer following (2n+ 3−

√
4n+ 5)/2. (If

√
4n+ 5 is an integer then |S∗| can take

two values, (2n+ 3−
√

4n+ 5)/2 and (2n+ 5−
√

4n+ 5)/2)

The characterization turns out to be equivalent to the characterization in Bloch (1996)
and Ray and Vohra (1999). It is important to note that both Bloch (1996) and Ray
and Vohra (1999) needed to complement the description of the game with the rules of
negotiation and coalition formation. Whereas ECB is directly applied to the description
of the game, completely abstracting away from how agreements are reached.

8 Concluding Remarks

8.1 One Step Deviation Property

The deviations from a coalitional behavior can be very complicated, hence it is important
to know the conditions under which the existence of a profitable deviation implies the
existence of a simple profitable deviation. The following proposition provides such a
condition.

Proposition 11. Let φ be a coalitional behavior and suppose there exists a profitable de-
viation by S to φ′. Then the deviation can be replaced with a profitable one step deviation
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if there exists z∗ ∈ Z with φ(z∗) 6= φ′(z∗) such that σ′(z∗) is not a cycle and there are
finitely many z ∈ σ′(z∗) such that φ(z) 6= φ′(z).

The following corollary directly follows from the proposition.

Corollary 3. In any finite horizon acyclic game ECB satisfies the one step deviation
property.

If the game is not finite or if the game is cyclic then the one step deviation property
need not hold. The example of the infinitely repeated favor exchange in Section 4.2 shows
that acyclic infinite horizon games may fail to satisfy the one step deviation property.
Whereas the example in Figure 8 shows that a finite cyclic game may fail to satisfy the
one step deviation property.

Finally, in some games it is easy to see that there exists no profitable deviation that
leads to a cycle or an infinite path of play, examples are Rubinstein’s bargaining game
and beeline games. Directly from Proposition 11 it is easy to see that in these games one
step deviation property holds.

Corollary 4. Suppose Γ is such that for any i ∈ N , z ∈ Z and h ∈ Hz, we have that
h �i h′ whenever h′ is a cycle or an infinite path. Then Γ satisfies the one step deviation
property.

8.2 Existence

The generality of an extended coalitional game makes it hard to provide a general exis-
tence result. Nevertheless, the paper contains some indirect existence results in certain
classes of games. For instance, an ECB exists in balanced characteristic function games
and finite extensive form games.

Figure 12a taken from Chwe (1994) provides an example of a simple game with no
ECB. In this example in no ECB we can have φ(a) = (a, a, ∅) since player 2 has an
incentive to deviate and move to c. But the coalitional behavior in which player 2
moves from a to c is not an ECB either, because players 1 and 2 can together induce the
coalitional behavior in which player 1 moves instead of 2 and this is a profitable deviation
for both. But this is also not an ECB, because in this case player 1 would like to deviate
by refusing to move. We have returned back to where we started. So, there exists no
ECB in this game.

Chwe (1994) calls this example ‘preemption’, that we would expect player 1 to take a
detrimental action to his welfare to preempt player 2 from taking an action that is even
worse. Nevertheless, we see that player 1 taking his action is not an ECB, because he
falsely believes that he can deviate to ‘no action’, whereas the consent of 2 is needed
for such a deviation. That is why I think the game in Figure 12b captures the story
behind ‘preemption’ more accurately and there is a unique ECB in that game in which
1 preempts 2 by taking the action available to him. Note that the difference is that in
Figure 12b, ‘no action’ is explicitly included as an arc in the graph and the set of players
that can take that action is the set of players needed to stop any other action to be taken.

Another example in which an ECB does not exist is represented in Figure 12c. We
see that there is a cycle among all possible coalitional behaviors of this game, which
precludes existence. Note that, although the root is taken as a state, unlike the above
example this has no consequence on the existence problem.
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a (0, 0) b (−1, 4)

c (−2, 2)

{1}

{2}

(a) Preemption 1

a b (−1, 4)

c (−2, 2)

d (0, 0)

{1}

{2}

{1, 2}

(b) Preemption 2

a (0, 0, 0)

b (2, 1, 0)

c (0, 2, 1)

d (1, 0, 2)

{1, 2}

{2, 3}

{1, 3}

(c) Nonexistence

9 Appendix

Proof of Lemma 1. Directly follows from Corollary 3 in Section 8.1.

Proof of Proposition 1. Since ECB satisfies the one step deviation property, any prof-
itable coalitional deviation can be replaced by a profitable one step deviation. Since each
subgame perfect equilibrium is immune to profitable one step deviations, we have that
each subgame perfect equilibrium is an ECB. Each ECB is a subgame perfect equilibrium
by Lemma 2.

Proof of Lemma 2. Let φ be a coalitional behavior that is not a subgame perfect
equilibrium. Then there exists an individual i ∈ N that can deviate to a coalitional
behavior φ′ such that σ′(z∗) �i σ(z∗) for some z∗ ∈ Z. Let Z1 = {z ∈ σ′(z∗)|φ(z) 6= φ′(z)}
and let Z2 = {z ∈ Z1|σ(z) �i σ′(z)}. If Z2 = ∅ then consider the deviation from φ by i
that only includes the actions in Z1, which is a deviation that increases the payoff of i at
every node at which an action changes. If Z2 6= ∅ then let z′ be the node in Z2 that is
closest to z∗. Consider the deviation by i from φ, that only involves the actions at the
nodes in Z1 that are in between z∗ and z′ (including z∗, not including z′). The resulting
deviation is profitable. Hence, φ is not an ECB.

Proof of Proposition 2. If φ is an ECB then by Lemma 2, φ is a subgame perfect
equilibrium. Furthermore since it is an ECB, it is also immune to coalitional deviations.
This proves the only if part.

Now suppose φ is a subgame perfect equilibrium that is immune to coalitional devi-
ations as described in the proposition. But then by Proposition 11 in Section 8.1, any
profitable deviation can be replaced by a profitable one step deviation. But each one
step deviation is an individual deviation. Since φ is a subgame perfect equilibrium, this
implies that there does not exist a profitable deviation and hence φ is an ECB.

Proof of Lemma 3. Let φ be an ECB under myopia.
First suppose that (x, P ) is stable, but is not in the core. Then there exists a coalition

S and yS ∈ V (S) such that yS > xS. By the conditions on the set of actions, S can deviate
and induce a path with the first outcome being some (z, P ′), where zS = yS. The only
state at which an action changes is (x, P ) and S is better off here, hence the deviation is
profitable. A contradiction.
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Now assume that (x, P ) ∈ C(N, V ) and (x, P ) /∈ S(φ). Suppose φ((x, P )) = ((x, P ), (x′, P ′), T ).
If for some j ∈ T we have xj > x′j then there exists a profitable deviation in which j
blocks the move, since φ is an ECB this would be a contradiction. But then we have
x′i ≥ xi for all i ∈ T . Furthermore if x′i > xi for all i ∈ T then (x, P ) /∈ C(N, V ), therefore
we must have x′i ≥ xi for all i ∈ T and x′k = xk for some k ∈ T .

Proof of Proposition 3. The construction used in the proof is similar to the ones found
in Diamantoudi and Xue (2003) and Konishi and Ray (2003).
1st Step: If (x∗, P ∗) ∈ C(N, V ) then there exists an ECB under foresight φ such that
T (σ((x, P ))) = (x∗, P ∗) for all (x, P ) ∈ Z.

The proof is by construction, I will construct an ECB under foresight φ with the
desired property.

Take any (x∗, P ∗) = (x∗, {S∗1 , S∗2 , .., S∗K}) ∈ C(N, V ). For any coalition S, let S denote
the partition of S composed of singletons. Let φ(x∗, P ∗) = ((x∗, P ∗), (x∗, P ∗), ∅).

Let (xt, Pt) = (xt, {S∗1 , ..., S∗t ,∪j=t+1,..,KS∗j }), where xt(S
∗
j ) = x∗(S∗j ) for all j = 1, .., t

and xt({i}) = max v({i}) for any i ∈ ∪j=t+1,..,KS
∗
j . For any t = 0, 1, .., K − 1, let

φ(xt, Pt) = ((xt, Pt), (xt+1, Pt+1), S
∗
t+1).

For any (x, P ) 6= (xt, Pt) for any t = 0, 1, .., K, let φ((x, P )) = ((x, P ), (x′, P ′), {i}),
where x′({i}) = max v({i}), {i} ∈ P ′ and where i is the player with the smallest index
for which x∗i ≥ xi and i ∈ S ∈ P , where |S| ≥ 2. Note that since (x∗, P ∗) ∈ C(N, V ),
such a player exists.

This completes the specification of φ, note that φ is a coalitional behavior as it assigns
a unique action for each z ∈ Z. Furthermore T (σ(z)) = (x∗, P ∗) for all z ∈ Z. Now
we need to show that φ is an ECB. As any deviation leading to an infinite path would
lead to a utility of max v({i}), by Proposition 11 we can restrict attention to one step
deviations.

As any one step deviation at (x∗, P ∗) leads to a cycle there exists no profitable one
step deviation at (x∗, P ∗). Assume that there is a profitable one step deviation at some
(x, P ) 6= (x∗, P ∗), but if the deviating coalition is taking another action at (x, P ) then
the deviation is not profitable since it will again end up at (x∗, P ∗). Then the deviating
coalition is inducing ‘no action’ at (x, P ), but since the coalition moving at (x, P ) weakly
prefers (x∗, P ∗) to (x, P ), this cannot be a profitable deviation. Contradiction. Hence, φ
is an ECB.
2nd Step: Suppose φ is an ECB under foresight such that T (σ((x, P ))) = (x∗, P ∗) for
all (x, P ) ∈ Z then (x∗, P ∗) ∈ C(N, V ).

Towards a contradiction suppose φ is an ECB under foresight such that T (σ(x, P )) =
(x∗, P ∗) for every (x, P ) ∈ Z but (x∗, P ∗) is not in the core. Then there exists (x, P ) such
that S ∈ P and xS > x∗(S). But φ induces a finite path from (x, P ) to (x∗, P ∗) and at
some point someone in S is active on this path. Let (x′, P ′) be the first node on the path
for which some j ∈ S is active, let j deviate by refusing to take the action. The resulting
deviation is profitable as j is getting x′j = xj instead of x∗j . A contradiction.

Proof of Proposition 4. Towards a contradiction suppose φ is an ECB such that
T (σ(x, P )) = (x∗, P ∗) for every (x, P ) ∈ Z but (x∗, P ∗) is not in the core. Then there
exists (x, P ) such that S ∈ P and xS > x∗(S). But φ induces a finite path from (x, P )
to (x∗, P ∗) and at some point someone in S is active on this path. Let (x′, P ′) be the
first node on the path for which some j ∈ S is active, let j deviate by refusing to take
the action. The resulting deviation is profitable as j will ultimately be getting x′j = xj
instead of x∗j and δ → 1.

38



Proof of Proposition 5. Let φ be an FECB. I will use the function used by Chwe
(1994) in his proof of Proposition 1 of his paper. Define f : 2Z → 2Z as f(X) = {a ∈
Z| for all d, S such that (a, d, S) ∈ Aa there exists e ∈ X where d = e or e� d such that,
vi(a) ≥ vi(e) for some i ∈ S}. Chwe showed that LCS contains all sets X for which
f(X) ⊇ X. Hence, if we can show that S(φ) ⊆ f(S(φ)) then we are done.

Towards a contradiction assume not. Then there exists x ∈ S(φ) such that there exists
d, S with (x, d, S) ∈ Ax and for all e ∈ S(φ) where e = d or e� d we have vi(e) > vi(x)
for all i ∈ S. First suppose d ∈ S(φ), but then since vi(d) > vi(x) for all i ∈ S, we have
that S has a profitable deviation from φ. A contradiction.

Now suppose that d /∈ S(φ). Then T (σ(d)) ∈ S(φ) and T (σ(d)) � d, because
otherwise there is a profitable deviation in which the coalition who is not better off can
deviate by refusing to move. But then vi(T (σ(d))) > vi(x) for all i ∈ S and moving to d
from x is a profitable deviation for S, hence φ is not an ECB. A contradiction.

Proof of Proposition 6. Take Γ that satisfies NI and MOA.
First suppose that V is an SREFS and φ is the coalitional behavior that supports it.

I will show that φ is an FECB. First note that by Proposition 11 in Section 8.1 FECB
satisfies the one step deviation property, hence it suffices to check one step deviations.
Suppose there is a profitable deviation at some unstable x in which some i blocks the
move, but then vi(x) > vi(T (σ(x))), which is a contradiction to ES. Suppose there is a
profitable deviation at some unstable x where i blocks an action leading to z and T takes
an action leading to y. By MOA there is also a profitable deviation in which i blocks
the action leading to z and T ∪ {i} takes an action leading to y. Furthermore since the
deviation is profitable we have vj(T (σ(y))) > vj(T (σ(x))) for all j ∈ {T ∪ i}, which is a
contradiction to M. Finally suppose there is a profitable deviation at some stable outcome
x by coalition S to an outcome z, but then vj(T (σ(z))) > vj(T (σ(x))) for all j ∈ S, a
contradiction to IS. But we have exhausted all possible one step deviations, hence φ is
an FECB.

Now suppose that φ is an FECB. We will show that S(φ) is an SREFS supported by φ.
Note that at any state x with φ(x) = (x, x, ∅) we have that there does not exist y and S
such that (x, y, S) ∈ Ax and vi(T (σ(y))) > vi(T (σ(x))) for all i ∈ S, as otherwise S has a
profitable deviation. Hence IS is satisfied.Now take any state x for which φ(x) = (x, y, S)
for some y and S. First note that vj(T (σ(x))) > vj(x) for all j ∈ S, since otherwise
by NI there exists i ∈ S for which vi(x) > vi(T (σ(x))) in which case i has a profitable
deviation at x. But then ES is satisfied. Finally if M is violated then trivially there exists
a profitable deviation and φ is not an FECB, so M is also satisfied.

Proof of Proposition 7. Figure 8 shows that an EPCF may not be a DECB, so here I
will only show that each DECB is an EPCF. Let φ be a DECB. First note that for any
x, y, S, where φ(x) = (x, y, S), a straightforward calculation shows that σ(y) �S σ(x) iff
σ(x) �S (x, x, ∅) (Remember that (x, x, ∅) is the path of play corresponding to staying
at x and utility of a path corresponds to the discounted utility of the states visited along
the path). I will refer to this observation as (∗).

Take any x ∈ Z with φ(x) = (x, y, S) where x 6= y, first observe that σ(x) �S
(x, x, ∅), as otherwise by NI there exists i ∈ S for which (x, x, ∅) �i σ(x), who would
have a profitable deviation in which she blocks the taken action. By (∗) this implies that
σ(y) �S σ(x). Towards a contradiction assume that there exists z with (x, z, S) ∈ Ax
and σ(z) �S σ(y). But then there exists a profitable deviation by S to z, a contradiction.
So, φ satisfies the first condition.
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Now assume that x is such that there exists y, S with (x, y, S) ∈ Ax and σ(y) �S σ(x).
Towards a contradiction assume φ(x) = (x, x, ∅). But then σ(y) �S (x, x, ∅), but this
implies that {(x, y, S), σ(y)} �S (x, x, ∅). But then there is a profitable deviation by S
to y, a contradiction. So, φ also satisfies the second condition and it is an EPCF.

Proof of Lemma 4. For the first part see the proof of Proposition 8. For the second part,
suppose φ is a coalitional behavior such that for some z ∈ Z we have L(σ(z)) > 1. Con-
sider the deviation in which the initiator S of φ(z) changes the action to (z, T (σ(z)), S),
since the game is a beeline game S can do this. The deviation is profitable because of
the transaction costs, so φ is not an ECB.

Proof of Proposition 8. First I will show that the resulting coalitional behavior is an
ECB. Note that the game satisfies the one step deviation property by Proposition 11,
as any deviation to an infinite length path will provide the worst utility. Hence, I will
check one step deviations. Suppose φ(z) = (z, z, ∅), then there exists no stable outcome
that dominates z and every outcome that is reachable from z is reachable in one step.
Hence, there is no deviation. Suppose φ(z) = (z, x, S), then x is stable. Futhermore
vj(x) > vj(z) for all j ∈ S and hence there is no profitable deviation in which some
i ∈ S refuses to take the action without joining another action. Finally suppose there
exists a deviation in which i ∈ S blocks (z, x, S) and instead T takes the action (z, x′, T ).
Whatever T (σ(x′)) is since the game is a beeline game it can be reached in one step from
z by T . So, without loss of generality assume φ(x′) = (x′, x′, ∅). But then vj(x

′) > vj(x)
for all j ∈ {T ∪ i} and x′ is stable. A contradiction.

For the other way assume that φ is an ECB. As any z ∈ Z0 is undominated we have
that for every z ∈ Z0, φ(z) = (z, z, ∅). Assume that all the stable outcomes of φ can be
obtained from the algorithm for all z ∈ Zn for all n < k. Take any x ∈ Zk. Suppose
φ(x) = (x, x, ∅), then there does not exist any stable outcome that dominates x and hence
µ(x) = ∅ (note that any outcome that dominates x must be in ∪i<kZi). Finally assume
that φ(x) = (x, z, S). Since by Lemma 4 in any ECB, the prediction is reached in one
step we have that z ∈ µ(x). Furthermore since φ is an ECB we have vj(z) > vj(x) for all
j ∈ S, as otherwise because of the transaction costs it is a profitable deviation for some
i ∈ S to refuse to take the action.

Finally since φ is an ECB there does not exist T , y with (x, y, T ) ∈ Ax, φ(y) = (y, y, ∅),
and i ∈ S such that vj(y) > vj(z) for all j ∈ {T ∪ i}. Otherwise, trivially there is a
deviation.

Proof of Corollary 2. Note that any X ∈ C1 is undominated and any X ∈ Ck can only
be dominated by some Y ∈ Cl, where l < k, furthermore for such Y we need to have
Y ⊆ X. But then directly from the 1st Step in Proposition 8 we have that any X ∈ C1
is stable and any X ∈ Ck is stable iff it is not dominated by some stable Y ∈ CX \ {X}.
So, we only need to show the 2nd step of Proposition 8.

By Proposition 8 for any X unstable, we have φ(X) = (X,T, T ′) for some T ′, T where
(i) T is stable, v(T ) >T ′ v(X) and (ii) there does not exist S ′ stable, S ⊆ X, j ∈ T ′ with
(X,S ′, S) ∈ AX such that v(S ′) >S∪{j} v(T ). I will show that T ′, T satisfies (i) and (ii)
iff T ∈ arg minA∈M(X) γA and T ′ is any coalition that satisfies T ′ ∈ WX and T ′ ⊆ T .

Note that if T ∈ arg minA∈M(X) γA, T ′ ∈ WX and T ′ ⊆ T , then T ′, T trivially satisfy
(i). Suppose it violates (ii) but then there exists S ′ stable, S ⊆ X, j ∈ T ′ with (X,S ′, S) ∈
AX such that v(S ′) >S∪{j} v(T ). Since v(S ′) >S v(T ), we have S ⊆ S ′. Since S ∈ WX ,
we have S ′ ∈ WX , finally since j ∈ T ′ prefers S ′ to T we have γS′ < γT . But then
T /∈ arg minA∈M(X) γA, a contradiction.
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Now suppose that T, T ′ satisfies (i) and (ii). Suppose there exists F ∈ M(X) with
γF < γT . But then F ∩ T ′ 6= ∅ (as α ≥ 1

2
) and vi(F ) > vi(T ) for all i ∈ F ∪ {F ∩ T ′}

(since vi is increasing in relative power), a contradiction to (ii). So, we only need to show
that T ′ ⊆ T . By (i), since vi(T ) > vi(X) for all i ∈ T ′, we have T ′ ⊆ T .

Proof of Proposition 9. First I will show that the resulting coalitional behavior is
an ECB. Note that the game satisfies one step deviation property, therefore I will check
one step deviations. Suppose φ(z) = (z, z, ∅), then there exists no action that can be
taken at z such that the initiator strictly prefers the resulting path. Hence, there is no
deviation. Suppose φ(z) = (z, x, S), where z 6= x, then x ∈ µ′(z). This means that either
(z, z, ∅) /∈ Az or σ(z) = {(z, x, S), σ(x)} �S (z, z, ∅), hence there is no profitable deviation
in which some i ∈ S refuses to take the action without joining another action. Finally
suppose there exists a deviation in which i ∈ S blocks (z, x, S) and instead T takes the
action (z, x′, T ). But then {(z, x′, T ), σ(x′)} �T∪i {(z, x, S), σ(x)}. A contradiction.

For the other way assume that φ is an ECB. As any z ∈ Z0 is exogeneously stable
we have that for every z ∈ Z0, φ(z) = (z, z, ∅). Assume that φ can be obtained from the
algorithm for every z ∈ Zn for n < k. Take any x ∈ Zk. Suppose φ(x) = (x, x, ∅), then
there does not exist any z ∈ N(x) with {(x, z, S), σ(z)} �S (x, x, ∅) for some S (note that
any outcome that is reachable from x must be in ∪i<kZi). Finally assume that φ(x) =
(x, z, S). Since φ is an ECB we have that either (x, x, ∅) /∈ Ax or {(x, z, S), σ(z)} �S
(x, x, ∅), hence z ∈ µ′(x). Furthermore since φ is an ECB there does not exist T and x′

with {(z, x′, T ), σ(x′)} �T∪i {(z, x, S), σ(x)}. We are done.

Proof of Proposition 10. At any outcome z ∈ Z, let |z| denote the number of agree-
ments in z and let N \ z denote the set of players that have not made an agreement yet.
Note that the proof is very similar to Bloch (1996)’s proof, that is why I have skipped
many of the calculations. To be more precise, when I say ‘the optimal move is x’, I
directly take this observation from Bloch’s paper and skip the calculation. Please refer
to the paper for details.

1st Step: Show that at any subgame starting at z where |N \ z| < (|z| + 1)2 an ECB
exists and any ECB specifies that N \ z remains alone.

First note that if z is such that N \ z = {i}, then the only possibility is for i to stay
alone. Now assume that z is such that |N \ z| < (|z|+ 1)2 and for any subgame reachable
from z ECB specifies that all subsequent players will choose to remain alone. At z the

payoff of a player who forms a coalition S is (a−c)2
|S|b(|N\z|−|S|+|z|+2)2)

, which is maximized at

|S| = 1 (see Bloch(1996) for the calculation). Which means that if a coalitional behavior
requires a coalition S with |S| > 1 to move at z, any j ∈ S can deviate by instead moving
by himself and that would be a profitable deviation. Similarly if a coalitional behavior
specifies that j is moving alone at z then there exists no profitable deviation since this
move maximizes the payoff of j.

2nd Step: Show that at any subgame starting at z where |N \ z| = (|z| + 1)2 an ECB
exists and it either specifies that some j ∈ N \ z moves alone or N \ z forms a coalition
at z.

Suppose z is such that |N \ z| = (|z| + 1)2. By Step 1 in any subgame reachable
from z all the remaining players will decide to remain isolated, so at z the payoff of a

player who forms a coalition S is (a−c)2
|S|b(|N\z|−|S|+|z|+2)2

, which is maximized at |S| = 1 and

|S| = |N \ z|. Which implies that only the coalitional behaviors that specify that some
j ∈ N \ z moves alone or N \ z forms a coalition will be immune to deviation.
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3rd Step: Show that at any z where (|z| + 2)2 + 1 > |N \ z| > (|z| + 1)2 any ECB
specifies that N \ z will form a coalition.

Suppose z is such that (|z|+ 2)2 + 1 > |N \ z| > (|z|+ 1)2 . By Step 1 in any subgame
reachable from z all the remaining players will decide to remain isolated, so at z the

payoff of a player who forms a coalition S is (a−c)2
|S|b(|N\z|−|S|+|z|+2)2

, which is maximized at

|S| = |N \ z|.
4th Step: Show that at any z where (|z| + 2)2 + 1 = |N \ z| an ECB either specifies
that N \ z will form a coalition or some j ∈ N \ z will declare that it will stay alone or
N \ z \ j will form a coalition.

Steps 1 through 3 establish the ECB for every subgame reachable from z. If in any
subgame z′ where |N \ z′| = (|z′|+ 1)2 the ECB specifies that the remaining players will
merge then the optimal move for player j /∈ z, j ∈ z′ is to remain alone. This means that
the coalitional behavior that specifies that j is moving alone at z is an ECB. In this case,
if a coalitional behavior specifies that a coalition S including j where |S| > 1 moves then
j has a profitable deviation. If a coalitional behavior specifies that |S| > 1 that does not
include j moves then observe that since in the subgame following this every other player
will remain isolated this move can only be profitable if N \ z \ j moves, otherwise there
exists a deviation in which S would stop moving but instead let j move alone. Note that
both of the described ECBs lead to the same outcome.

If at every subgame z′ where |N \z′| = (|z′|+1)2 the ECB specifies that the remaining
players remain isolated, then the optimal move at z is for the remaining players to merge.
Hence that is the only ECB.

5th Step: Show that at any z where (|z|+ 2)2 + 1 < |N \ z| any ECB specifies that some
j ∈ |N \ S| will declare that it will stay alone.

This step is solved with induction. First think about a z such that (|z|+2)2+1 < |N\z|
and at any subgame reachable from z ECB is defined in Steps 1 through 4. Any player
j ∈ N \ S would maximize its payoff by moving alone, so ECB has to specify that some
j will move alone. Once we are done with this we can move up the tree to some other z′,
at which point the ECB for every subgame that is reachable from z′ is defined. But at
each such step we will have that it is optimal for j ∈ N \ z′ to make the move alone.

6th Step: The result.

Steps 1 through 5 establish that the ECB outcomes will be equivalent to the outcomes
of the game Bloch considers. Then the proposition follows from Bloch’s calculations.

Proof of Proposition 11. Assume S has a profitable deviation from φ to φ′, let z∗ be
such that φ(z∗) 6= φ′(z∗), σ′(z∗) is not a cycle and there are finitely many z ∈ σ′(z∗) such
that φ(z) 6= φ′(z). Then there exists z′ ∈ σ′(z∗) such that φ(z′) 6= φ′(z′), but φ(z) = φ′(z)
for all z ∈ σ′(z′) such that z 6= z′. Think about the deviation in which S changes φ(z′)
to φ′(z′), this is a one step deviation and furthermore z′ is the only node for which the
action changes and it changes from φ(z′) to φ′(z′). Since the initial deviation is profitable
we have σ′(z′) �S σ(z′), hence this one step deviation is also profitable.
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