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Abstract

We develop a model of contests on networks. Each player is “connected” to

a set of contests, and exerts a single effort to increase the probability of winning

each contest to which she is connected. We characterize equilibria under both the

Tullock and all-pay auction contest success functions (CSFs), and show that many

well-known results from the contest literature can be obtained by varying the struc-

ture of the network. We also obtain a new exclusion result: We show that, under

both CSFs, equilibrium total effort may be higher when a strong player is excluded

from the network. This finding contrasts the existing literature, which limits find-

ings of this sort to the all-pay auction CSF. Our framework has a broad range of

applications, including research and development, advertising, and research funding.
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1 Introduction

In recent years, economists have recognized the importance of understanding how the

structure of interactions affects economic behavior, which has led to the development of

research on networks. The importance of this field of research is unquestionable, due to

the broad applicability of these models in many economically relevant settings; to name

a few: job search and employment dynamics (Calvó-Armengol and Jackson, 2004; Calvó-

Armengol, 2004), the provision of public goods (Bramoullé and Kranton, 2007; Bramoullé

et al., 2014), collaboration/research and development (Goyal and Moraga-Gonzalez, 2001;

Goyal and Joshi, 2003), and criminal activity (Calvó-Armengol and Zenou, 2004; Ballester

et al., 2006). Jackson and Zenou (2014) provide a comprehensive overview of the literature

on network games, and emphasize three approaches researchers have taken to study such

games:1 (1) games of strategic complements and substitutes; (2) games with linear best-

replies; and (3) settings with an uncertain pattern of interactions.2 These three approaches

have proved fruitful in allowing researchers to understand how the underlying pattern of

interactions affects behavior.

In this paper, we study a new class of network games: contests on networks. Our model

consists of set of players and a set of contests, which form a commonly known bipartite

graph (or network).3 Each player competes for prizes to which she is connected by exerting

a single effort. A player’s expected payoff depends on her own effort, and the efforts of her

competitors. Contests can be used to model many economically relevant situations, and

there is a vast literature that analyzes individual and aggregate behavior.4 Our interest

here is to understand how the pattern of interactions affects behavior. Our model has a

number of interesting applications including, for example, centralized R&D decisions by

multinational firms (MNFs). Prizes are commonly used tools to encourage R&D activity,5

and contests can be used to model both explicit R&D contests or patent races (e.g. Che and

Gale, 2003; Baye and Hoppe, 2003). To take advantage of economies of scale and scope,

historically, R&D activity within MNFs has tended to be centralized, and undertaken at

1See also Jackson (2008) and Bramoullé and Kranton (2016).
2Examples of models with an uncertain pattern of interactions include Jackson and Yariv (2007),

Galeotti et al. (2010)
3A bipartite graph is a graph in which the vertices may be partitioned into two disjoint subsets, and

the edges connect the vertices from these subsets.
4For relevant surveys see Nitzan (1994), Congleton et al. (2008), and Konrad (2009).
5Innovation prizes were a central feature of the Obama Administration’s efforts to stimulate American

innovation as part of the Recovery Act of 2009. From 2010 to 2012, 200 new innovation prizes were offered
by federal agencies in areas ranging from national defense to education. (Source: http://challenge.

gov/about.)

2

http://challenge.gov/about
http://challenge.gov/about


the corporate level (Gassmann and Von Zedtwitz, 1999). In this interpretation, the firm

chooses a single level of R&D effort, the benefits of which are then realized by each branch

of the firm. Our model could also be interpreted in the context of a national advertising

campaign by a geographically dispersed franchised firm. In this context, each firm chooses

a level of expenditure on a national advertising campaign, which increases the share of

the market each franchise expects to capture. Finally, one might also interpret our model

in the context of research funding. In this setting, researchers exert effort on a project

proposal, which they then submit to various funding agencies to increase their chances of

receiving funding for their project.

The main contributions of this research are twofold. First, we contribute to the litera-

ture on networks by analyzing a new class of network games. We characterize equilibrium

behavior in terms of the underlying network characteristics, and study how these char-

acteristics influence behavior. Second, we contribute to the literature on contests by

establishing connections between several important observations in the contest literature,

and different network structures in our setting. That is, we provide a unified framework,

within which many well-known results in the contest literature can be obtained by simply

varying the structure of the network. We also explore how equilibrium behavior depends

on the contest success function (CSF). We focus on the two most widely used CSFs in

the literature; the Tullock CSF, and the all-pay auction (APA) CSF.6

We show that the equilibrium behavior in symmetric contests7 – a contest in which

players compete for a single prize of common value – is analogous to equilibrium behavior

(for both CSFs) in our model, when the network is biregular.8 We also show that equi-

librium behavior depends only on player and prize degrees, and is independent from the

number of players and the number of prizes. Consistent with well-known results, when

the network is biregular total equilibrium effort is always higher under the APA CSF than

under the Tullock CSF.

We then show that equilibrium behavior in 2-player asymmetric contests9 is akin to

equilibrium behavior in our setting, when the network structure is a star.10 In particular,

6Comparisons between Tullock’s CSF and the APA CSF are common in the literature. See, for
example, Hillman and Riley (1989) or Fang (2002).

7See Tullock (1980) and Baye et al. (1996) for the characterization of equilibrium in symmetric contests
with a single prize.

8A bipartite network, g, is biregular if each pair of nodes in the disjoint subsets of g have the same
degree.

9See Hillman and Riley (1989), Baye et al. (1996), Nti (1999, 2004), Stein (2002), and Matros (2006)
for the characterization of equilibrium in asymmetric contests.

10A star network consists of a single “central player”, M ≥ 1 “periphery players” and M prizes. The
central player competes for all M prizes, while each periphery player competes for exactly one prize.
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the central player behaves as if she is competing in a two-player contest in which she

has a higher value for the prize, while each periphery player behaves as-if competing

in a two-player contest in which she has a lower value for the prize. For star networks

under the Tullock CSF, total equilibrium effort is not monotonic in the level of noise

in the CSF (i.e., Tullock’s sensitivity parameter, r). This observation closely relates to

Nti’s (2004) result for two-player asymmetric contests. Moreover, under Tullock’s CSF,

the equilibrium effort of the central player is increasing in the number of prizes (and

periphery players), while for the APA CSF, the central player’s equilibrium strategy is

independent from the number of prizes, and periphery players. Finally, we show that

equilibrium effort may be higher under Tullock’s CSF, than under the APA CSF.

One of the most striking observations in the contest literature is the Exclusion Prin-

ciple, first introduced by Baye et al. (1993). The Exclusion Principle states that total

equilibrium effort may increase if the most competitive (the highest value) player is ex-

cluded from the contest. It is a common finding in the contest literature that the Exclusion

Principle holds only under the APA CSF, and does not apply to the Tullock CSF (see,

for example, Fang, 2002; Matros, 2006; Menicucci, 2006). Intuitively, excluding the high-

value player has two competing effects on equilibrium total effort. There is a direct effect:

excluding this player decreases total effort, due to the loss of this his contribution. But

there is also an indirect effect: the presence of a high-value player may have a “discour-

agement effect” on less competitive players. Excluding the high-value player “levels the

playing field”, which results in a more competitive contest, and leads the remaining play-

ers to exert higher effort. Prior results have found that the first effect always dominates

the second under the Tullock CSF. The reason is that the Tullock CSF introduces a signif-

icant amount of noise in determining the outcome of the contest, as compared to the APA

CSF. As a result, competition is softer, and the discouragement effect is less pronounced.

In this paper, we derive a new exclusion principle, given in terms of network structures.

Our result under the APA CSF nests the results of Baye et al., but we provide conditions

on the network, under which our exclusion principle also applies to the Tullock CSF.

We are the first to study contests as a game on networks. Other studies of contests

and networks have different angles. Franke and Öztürk (2015) study bilateral conflicts in

which players may compete for several prizes and each player chooses a vector of efforts.

König et al. (2015) studies a setting in which players, competing for a single prize, are

linked as enemies or allies via a network structure. Kovenock and Roberson (2015) study

the attack and defense of targets, which are connected via a network structure. In this

model, the attacker’s objective is to disconnect the network, while the defender’s objective
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is to maintain network connectivity. Marinucci and Vergote (2011) and Grandjean et al.

(2016) study a model of network formation in an all-pay auction,11 and a Tullock contest,

respectively. In these models, players compete for a single prize, but the value of the prize

to each player depends on the number of links she forms. Dahm and Esteve-Gonzalez

(2014) and Dahm (2017) study contests on a particular network structure, in which all

players compete for a main prize, while a set of disadvantaged players also compete for

an additional prize. Both studies find that the additional prize can be used to level the

playing field, and give some advantage back to the disadvantaged player(s). In this way,

a contest designer may be able to elicit greater total effort by splitting the prize budget

between two separate prizes.

The remainder of the paper is organized as follows. The model is presented in Section

2. In Section 3 we first characterize equilibria under both the Tullock and APA CSFs for

certain network structures of interest. We then show the connection between our results

and the existing contest literature. In Section 4 we study how the underlying network

structure affects behavior. Concluding remarks are given in Section 5.

2 The Model

There are N players, and M contests. The set of players is denotedN = {1,. . . ,N}; the set

of contests is denotedM = {1, . . . ,M}. Each player i is risk neutral and is characterized

by a vector gi ≡ (gi1, . . . , giM) where gim = 1, if player i competes in contest m, and

gim = 0 otherwise. Let dpi =
∑

m∈M gim denote the degree of player i; i.e., dpi is the

number of contests in which i competes. Let dcm =
∑

i∈N gim denote the degree of contest

m; i.e., dcm is the number of players that compete in contest m. We assume throughout

that for all m ∈ M, dcm ≥ 2, which ensures that there is at least some competition in

each contest. Associated with each contest is a prize; if player i wins contest m, then

she receives the prize, V > 0. Player i chooses a single effort, xi ∈ R+, to increase her

probability of winning each contest in which she competes.

The network structure can be represented by a bipartite graph - a graph in which the

vertices can be separated into two disjoint subsets, and each edge connects the vertices

from these subsets. In our setting, the two disjoint subsets are the set of players, N , and

the set of contests, M; the edges indicate in which contest(s) each player competes.

11Marinucci and Vergote consider an all-pay auction where players have private values. In contrast,
we study the complete information all-pay auction. These two models are quite different qualitatively;
in particular, in contrast to the private value case, no pure strategy equilibrium exists under complete
information.
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Figure 1: The contest network as a bipartite graph.

Figure 1 illustrates the bipartite structure of the network. In this figure, player 1

competes in two contests (dp1 = 2); players 2 and 3 each compete in three contests (dp2 =

dp3 = 3); and 2 players compete in each contest (dcm = 2 for each contest m = 1, 2, 3, 4).

The bipartite network structure is summarized by the N ×M biadjacency matrix:

g =


g11 g12 · · · g1M

g21 g22 · · · g2M
...

...
. . .

...

gN1 gN2 · · · gNM

 .

For the network structure in Figure 1:

g =

1 0 0 1

1 1 1 0

0 1 1 1

 .

Denote by x = (x1, . . . , xN) the vector of all players’ efforts. For a given network

structure, g, and vector of efforts, x, let pim(x,g) denote the probability that player i

wins contest m. The function, pim(·) is the contest-success function (CSF). Note that

pim(x,g) = 0 if gim = 0. Moreover, we assume that pim depends only on the efforts

allocated to contest m, and does not depend on the outcomes of other contests.

The expected payoff to player i is the sum of the expected payoffs across contests in
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which she competes; it is given by,

πi(x,g) =
∑
m∈M

pim(x,g)V − xi. (1)

Player i takes the strategies of the other N − 1 players and the network structure as

given, and chooses xi to maximize πi. Before proceeding to the analysis, there are a few

network structures worth mentioning.

Biregular Networks

A bipartite network, g, is biregular if each pair of nodes in the disjoint subsets of g have

the same degree. In our context, this means each player competes in the same number of

contests, and each contest has the same number of participants. We provide the following

definition:

Definition 1. Biregular Network

The bipartite network, g, is biregular if for all contests m,n ∈ M, and all players

i, j ∈ N :

1. Contest Symmetry: dcm = dcn = dc

2. Player Symmetry: dpi = dpj = dp

In terms of the biadjacency matrix, for a biregular network the sum across each row

is equal to dp, and the sum down each column is equal to dc. Studying Figure 1, it is

clear that this is not a biregular network; while each contest has 2 participants (so Part

1 of Definition 1 is satisfied, with dc = 2), player 1 competes in 2 contests, while players

2 and 3 each compete in 3 contests; thus, Part 2 of Definition 1 is not satisfied.

A biregular network with N players, M prizes, contest degree, dc, and player degree,

dp, can be summarized by [N, dp;M,dc]. From the degree definitions (and our assumption

that dcm ≥ 2) it follows,

2 ≤ dc ≤ N (2)

and

1 ≤ dp ≤M. (3)

Note that the following link property must hold for biregular networks:

Ndp = Mdc. (4)
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The left-hand side of (4) gives the number of links from players to prizes. The right-hand

side of (4) gives the number of links from prizes to players. Clearly, these numbers must

be the same. Two special cases of biregular networks are complete networks, and circle

networks.12 We provide the following definitions:

Definition 2. Complete Network

A biregular network is complete if dc = N .

Definition 2 says that the biregular network is complete if each contest has N partic-

ipants. Note that the link property (4) implies that in a complete network, each player

competes for all M prizes; i.e., dp = M . This means that there is always a unique com-

plete network for any given N and M . We next define a circle network. Before doing so,

we will need to introduce some additional terminology: A walk is a sequence of nodes,

`1, . . . , `k, where `i ∈ N ∪M, and for each i from 1 to k − 1, `i is linked to `i+1.
13 The

length of the walk is equal to the number of links; i.e., k − 1. A path is a walk `1, . . . , `k

such that each pair of nodes is distinct, `i 6= `j, with the possible exception that `1 = `k.

A cycle `1, . . . , `k is a path such that `1 = `k.

Definition 3. Circle Network

A biregular network is a circle if dc = dp = 2, and there is a cycle of length 2N .

In a circle network, each player competes in two contests, and each contest has two

participants (i.e., dp = dc = 2), but no two contests have the same set of participants.

Note that the link property, (4), then implies N = M . Example 1 describes all biregular

networks for the case of N = 3; Figure 2 illustrates the corresponding networks.

Example 1. Suppose that there are N = 3 players.

• If M = 1, then there exists a unique biregular network. In this network, dc = 3 and

dp = 1.

• If M = 2, then there exists a unique biregular network. In this network, dc = 3 and

dp = 2.

• If M = 3, then there exist two biregular networks:

1. A circle network where dc = dp = 2.

2. A complete network where dc = dp = 3.

12Circle networks are also known as cycle graphs or ring networks.
13For instance, if `1 ∈ N , and k is odd then it must be that `k ∈ N . If there is a walk from `1 to `k

then there exist nodes `2, . . . , `k−1 ∈M∪N such that g`1`2 = g`3`2 = g`3`4 = · · · = g`k`k−1
= 1.
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2

Figure 2: Illustration of the four networks described in Example 1. For all four networks, N = 3. Top
left: M = 1, dc = 3, dp = 1; Top right: M = dp = 2, dc = 3; Bottom left: A circle network with M = 3,
dc = dp = 2; Bottom right: A complete network with M = dc = dp = 3.

Star Networks

In a star network there are M contests and N = M + 1 players: M “periphery players”

and 1 “central player”. Each periphery player competes in a single contest, while the

central player competes in all M contests. The winner of each contest receives a prize,

V > 0.

Definition 4. Star Network

Let g be a network such that |M| = M ≥ 2 and |N | = M +1. The network is a star if

(1) each contest k ∈ M has degree 2, i.e., dck = 2; (2) there is a “central player” i∗ ∈ N
that has degree M , i.e., dpi∗ = M ; and (3) each “periphery player” j ∈ N \{i∗} has degree

1, i.e., dpj = 1.

Figure 3 illustrates a star network where M = 5. As a convention, we will label the central

player of a star network as player M + 1; so, the set of periphery players is {1, . . . ,M}.

Hybrid Networks

Finally, we describe hybrid networks. Let g be a biregular network, and, consider adding

an additional player, who competes in σ contests. We refer to the resulting network

9



P3

P2P1

P5

P4

Figure 5: Star Network with N = 5 periphery players/prizes

P2

P1

P3

P4

Figure 6

P2

P1

P6

P5

P4

P3

P7

Figure 7: Hybrid Network

3

Figure 3: A star network with M = 5. Players are represented by hollow nodes; contests are represented
by solid nodes.

structure as a σ-hybrid network.14 We provide the following definition:

Definition 5. σ-Hybrid Network

Let g be any biregular network with N players and M prizes. A σ-hybrid network is

the network, g′, formed by adding an additional player to g, who competes for σ ≤ M

prizes. We call g the underlying network of g′. We refer to the players in g, {1, . . . , N},
as the underlying players of g′, and we call the additional player, N + 1, the hybrid player

of g′.

Figure 4 illustrates a 6-hybrid network where the underlying network is a 6-player

circle.

3 A Unified Framework

In this section we show that a number of important results from the contest literature

can be obtained as special cases of our network framework. Section 3.1 sets up the model

under the Tullock CSF, and provides an explicit characterization of equilibrium for certain

network structures of interest. Section 3.2 provides an analogous analysis for the APA

CSF. Section 3.3 unifies our results with the existing literature on contests. All proofs

are contained in the Appendix.

14We will sometimes refer to a σ-hybrid simply as a hybrid.
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Figure 4: A 6-hybrid network. The underlying network is a 6-player circle. Players are represented by
hollow nodes; contests are represented by solid nodes.

3.1 Tullock CSF

We now extend the classical Tullock contest to our network contest environment. Fix a

network structure, g, and let x−i ∈ RN−1
+ denote the vector of efforts chosen by all players

other than some player i. If
∑

j∈N gjmxj > 0 for some prize m, then the probability that

player i wins prize m is given by the following contest success function:

pim(xi,x−i,g) =
gimx

r
i∑

j∈N gjmx
r
j

.

The parameter r > 0 measures the sensitivity of the probability of success to players’

effort choices. A higher value of r corresponds to a contest success function that is more

sensitive to players’ efforts. If
∑

j∈N gjmxj = 0 for some contest m, then we assume that

each player linked to m is equally likely to win: pim(·) = gim
dcm

. Using equation (1), the

expected payoff to player i may then be written:

πi(xi,x−i,g) =
∑
m∈M

gimx
r
i∑

j∈N gjmx
r
j

V − xi.

Player i takes x−i and g as given and chooses xi ≥ 0 to maximize πi(xi,x−i,g). At

11



an interior solution, the first-order condition for player i is,

∂πi(xi,x−i,g)

∂xi
=
∑
m∈M


rxr−1i

(∑
j∈N gjmx

r
j

)
− rx2r−1i(∑

j∈N gjmx
r
j

)2 gimV

− 1 = 0. (5)

In a pure-strategy equilibrium in which each player is active (i.e. chooses a strictly

positive effort level), equation (5) is satisfied for each player i.

Characterizing Equilibrium

Equation (5) characterizes equilibrium for general network structures (when all players

are active). We will now provide closed-form expressions for equilibrium efforts for cer-

tain network structures of interest. It will be seen in Section 3.3 that these networks

have interesting connections with the existing contest literature. We will focus on “sym-

metric” equilibria. By symmetric in this context, we mean that symmetric players follow

symmetric strategies.

To begin, suppose that the network is biregular, summarized by [N, dp;M,dc], where

dc ≥ 2. In a biregular network, all players are symmetric; so, in a symmetric equilibrium,

x∗i = x∗j = x∗ for each i, j ∈ N . Imposing symmetry, for each i ∈ N , equation (5)

simplifies to,

∑
m∈M


rx∗r−1

(∑
j∈N gjmx

∗r
)
− rx∗2r−1(∑

j∈N gjmx
∗r
)2 gimV

− 1 = 0. (6)

Applying the properties of biregular networks given in Definition 1 to equation (6),

our first result characterizes the unique symmetric equilibrium of biregular networks.

Lemma 1. Suppose that the network is biregular and summarized by [N, dp;M,dc]. Under

the Tullock CSF there exists a symmetric pure-strategy equilibrium if and only if r ≤ dc

dc−1 .

The symmetric equilibrium is unique, and equilibrium individual effort, x∗, is given by,

x∗ =
r(dc − 1)

(dc)2
dpV.
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Total equilibrium effort is,

X∗ = Nx∗ =
r(dc − 1)

dc
MV.

Next, consider a star with M contests. Suppose that each of the M symmetric pe-

riphery players follow symmetric strategies. Let x∗ denote the equilibrium effort of each

periphery player, and let x∗M+1 denote the equilibrium effort of the central player. For

each periphery player, (5) reduces to,

rx∗rx∗r−1M+1

(x∗r + x∗rM+1)
2
V = 1. (7)

While for the central player, (5) becomes,

M∑
i=1

rx∗rx∗r−1M+1

(x∗r + x∗rM+1)
2
V − 1 = 0. (8)

Our next result characterizes the unique symmetric equilibrium when the network is a

star.

Lemma 2. Suppose the network is a star with M contests. Under the Tullock CSF there

exists a symmetric pure-strategy equilibrium if and only if rM r ≤M r +1. The symmetric

equilibrium is unique, and effort for each periphery player is,

x∗ =
rM r

(M r + 1)2
V.

The effort of the central player is x∗M+1 = Mx∗. Total equilibrium effort is,

X∗ = Mx∗ + x∗M+1 =
2rM r+1

(M r + 1)2
V. (9)

Finally, consider a σ-hybrid network. In contrast to biregular and star networks, for

hybrid networks, there may not exist a symmetric equilibrium in which every player is

active (i.e. exerts strictly positive effort). In particular, unless σ is large enough, there will

always exist a symmetric equilibrium in which the hybrid player is inactive (i.e., exerts

zero effort). We illustrate this finding first via an example, and then we provide a general

result.

Example 2. Suppose the network is a 1-hybrid in which the underlying biregular network

is a 3-player circle. The network structure is illustrated in Figure 5. Note that in any
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symmetric equilibrium, x∗1 = x∗3. Under the Tullock CSF with r = 1, it may be verified

that there is only one symmetric equilibrium, and in this equilibrium, x∗1 = x∗2 = x∗3 = V
2

;

and x∗4 = 0.

P3

P2P1

P5

P4
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Figure 5: A 1-hybrid network in which the underlying biregular network is a 3-player circle. Players
are represented by hollow nodes; contests are represented by solid nodes.

Our next result generalizes the finding of Example 2, and shows that, in a 1-hybrid,

there always exists an equilibrium in which the hybrid player is inactive, so long as each

of the other players compete in at least 2 contests.

Lemma 3. Consider a 1-hybrid network, g′, with the underlying network, g, where g is

summarized by [N, dp;M,dc] with dp ≥ 2. Under the Tullock CSF (r = 1) there exists an

equilibrium in which the hybrid player is inactive, and the effort of each underlying player

is given by,

x∗ =
(dc − 1)

(dc)2
dpV.

Example 2 and Lemma 3 suggest that when an additional player is added to a sym-

metric network, that player must compete in several contests in order to have an incentive

to actively participate. We will next consider the extreme case of M -hybrid networks, in

which the hybrid player competes for all M prizes in the underlying network. Figure 4

illustrates an M -hybrid network in which the underlying network is a 6-player circle.

Lemma 4. Suppose the network is an M-hybrid with an underlying biregular network

summarized by [N, dp;M,dc]. Under the Tullock CSF with r = 1 there exists a unique

symmetric equilibrium. In this equilibrium, effort for each underlying player is,

x∗ =
N

(N + 1)2
dpV.

The effort of the hybrid player is,

x∗N+1 = (N + 1− dc)x∗.
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Total equilibrium efforts is,

X∗ = Nx∗ + x∗N+1 =
(2N + 1− dc)N

(N + 1)2
dpV.

3.2 APA CSF

In this section we extend the all-pay auction to our network framework. Under the all-pay

auction CSF, player i wins contest m with certainty if her effort choice is greater than the

effort exerted by the other participants of contest m. In the event that 2 or more players

choose the same highest effort, these players are equally likely to win. Formally:

pim(xi,x−i,g) =


gim, if xi > maxj 6=i{gjmxj},
0, if xi < maxj 6=i{gjmxj},
gim
n
, if i ties with n− 1 others for the highest bid.

It is well-known that the APA with complete information does not possess a pure-

strategy equilibrium. Denote by Fj the CDF of player j’s mixed strategy, and let F−i =

(F1, . . . , Fi−1, Fi+1, . . . , FN) denote the collection of (independent) distribution functions

of all players other than player i. If player i chooses effort xi then,

pim(xi,F−i,g) = gim
∏
j 6=i

Fj(xi)
gjm .

The expected payoff for player i is,

πi(xi,F−i,g) =
∑
m∈M

(
gim
∏
j 6=i

Fj(xi)
gjm

)
V − xi.

Let Si ⊆ R+ denote the support of player i’s mixed strategy. In equilibrium, for each

player i, and each x, x′ ∈ R+,

x, x′ ∈ Si =⇒ πi(x,F−i,g) = πi(x
′,F−i,g)

and

x ∈ Si, x′ /∈ Si =⇒ πi(x,F−i,g) ≥ πi(x
′,F−i,g)
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Characterizing Equilibrium

We now provide an explicit characterization of equilibrium distribution functions for the

network structures of interest. Before proceeding, note that in a single-prize contest under

the APA CSF there typically exist many equilibria, including a continuum of asymmetric

equilibria when all players have a common prize value (see Baye et al., 1996, henceforth,

BKD). However, there typically exists a unique symmetric equilibrium. In our analysis,

we will focus on “symmetric” equilibria. As in Section 3.1, when we say “symmetric”

in this context, we mean that symmetric players follow symmetric strategies. We now

characterize equilibrium for biregular networks under the APA CSF.

Lemma 5. Suppose the network is biregular. Under the APA CSF there is a unique sym-

metric equilibrium in which each player randomizes continuously on the interval [0, dpV ]

according to the CDF,

F ∗(x) =
( x

dpV

) 1
dc−1

. (10)

The equilibrium expected payoff to each player is zero. The expected total equilibrium effort

is

X∗ =
Ndp

dc
V = MV.

Our next result characterizes the unique symmetric equilibrium for a star network.

Lemma 6. Suppose the network is a star with M contests. Under the APA CSF there

exists a unique symmetric equilibrium in which the central player randomizes uniformly on

[0, V ], while each periphery player places an atom at 0 of size α = M−1
M

, and randomizes

continuously on (0, V ] according to the CDF,

F ∗(x) =
M − 1

M
+

x

MV
.

The expected payoff of the central player is (M−1)V . The expected payoff of each periphery

player is zero, and the expected total equilibrium effort is,

X∗ = V.

Next, we consider hybrid networks under the APA CSF. Our first result complements

the finding of Lemma 3, and shows that unless the hybrid player competes in sufficiently

many contests, there always exists a symmetric equilibrium in which she is inactive.
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Lemma 7. Consider a 1-hybrid network, g′, with an underlying network, g, where g is

summarized by [N, dp;M,dc] with dp ≥ 2. Under the APA CSF there exists an equilibrium

in which the hybrid player is inactive, and each underlying player randomizes continuously

on [0, dpV ] according to the CDF,

F ∗(x) =
( x

dpV

) 1
dc−1

.

Finally, we characterize equilibrium under the APA CSF when the hybrid player com-

petes for all M of the contests.

Lemma 8. Suppose the network is an M-hybrid with an underlying network summarized

by [N, dp;M,dc]. Under the APA CSF there exists a unique symmetric equilibrium in

which each underlying player places an atom of size α =
(
M−dp
M

) 1
dc at zero, and randomizes

continuously on (0, dpV ] according to the CDF,

F ∗(x) =

(
M − dp

M
+

x

MV

) 1
dc

.

The hybrid player randomizes continuously on [0, dpV ] according to the CDF,

G∗(x) =
x

dpV F (x)dc−1
.

The expected payoff of the hybrid player is (M − dp)V . The expected payoff of each

underlying player is zero, and the expected total effort is equal to

X∗ = dpV.

3.3 Unification

In this section, we unify the results of Sections 3.1-3.2 with the existing literature on

contests.

Symmetric Contests

We begin by showing a connection between behavior in single-prize symmetric contests

and behavior in our model when the network structure is biregular.

Theorem 1. Suppose that the network is biregular and the CSF is either the Tullock or

APA. Individual equilibrium behavior and expected payoffs are equivalent to the behavior
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and expected payoffs in a dc-player contest in which symmetric players compete for a single

prize with common value dpV . Total equilibrium effort is equivalent to total equilibrium

effort in a dc-player contest in which players compete for a single prize with common value

MV .

Theorem 1 establishes a connection between behavior in the contest played on the

network, and behavior in symmetric single-prize contests, absent network effects. Consider

a biregular network summarized by [N, dp;M,dc]; in this network each of the N players

competes for dp prizes, and each contest has dc participants. Each player thus competes

for a total value of dpV , while the total value of all prizes is MV . Theorem 1 establishes

that each player behaves “as if” competing in a dc-player contest in which each player has

common value dpV , while total equilibrium effort is “as if” dc players each compete for a

prize of common value MV .

To further illustrate this result, consider, for concreteness, the three-player circle illus-

trated in the bottom-left panel of Figure 2. In this network, each player competes in two

contests, and each contest has two participants. In equilibrium, each player behaves as if

competing for a single prize of size 2V against one other player. To see this connection,

first consider a two-player contest with players A and B, who each compete for a single

prize of size 2V , and suppose the CSF is the Tullock. Let x∗ denote the (unique) sym-

metric equilibrium effort level in this game. If player A chooses effort, xA, and B plays

according to equilibrium, xB = x∗, then the payoff to player A is:

πA(xA, xB = x∗) =
xrA

xrA + xrB
2V − xA =

xrA
xrA + x∗r

V +
xrA

xrA + x∗r
V − xA. (11)

Now, in the 3-player circle network, if Player 1 (say) chooses effort x1, while players 2 and

3 each choose effort, x∗, then the payoff to Player 1 is the sum of the payoffs she receives

from the contest with Player 2 and with Player 3:

π1(x1, x2 = x∗, x3 = x∗,g) =
xr1

xr1 + xr2
V +

xr1
xr1 + xr3

V − x1

=
xr1

xr1 + x∗r
V +

xr1
xr1 + x∗r

V − x1. (12)

Clearly, the payoff to player A in equation (11) is the same as the payoff to player 1

given in equation (12). Since, by definition, x∗ maximizes the payoff to A, it must also
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maximize Player 1’s payoff. Hence, when Players 2 and 3 choose effort x∗, Player 1’s best

response is also to choose x∗.15 An analogous symmetry holds under the APA CSF.

It is also worth mentioning that the standard comparative statics results from the

contest literature hold in our setting when the network is biregular. Specifically, for either

the APA or Tullock CSF, expected individual and total equilibrium effort are increasing

in the prize value V . In addition, under the Tullock CSF, individual and total equilibrium

efforts are increasing in the noise parameter, r, and for any r such that a pure strategy

equilibrium exists under the Tullock, expected total effort is higher under the APA than

under the Tullock CSF.

Asymmetric Contests

Our next result establishes a connection between equilibrium behavior in the star network

with equilibrium behavior in 2-player asymmetric contests.

Theorem 2. Suppose the network is a star and the CSF is either the Tullock or APA.

Individual equilibrium behavior and expected payoffs are equivalent to the behavior and

expected payoffs in a 2-player asymmetric contest in which the “weak” player has value, V ,

while the “strong” player has value, MV . Each periphery player behaves as-if competing

as the weak player, while the central player behaves as-if competing as the strong player

in the 2-player contest.

Theorem 2 establishes a close connection between a contest played on a star network

and 2-player asymmetric contests. To see this connection more explicitly, consider a star

network with M contests. Note that the payoff to a periphery player, i, only depends

directly on her own effort and the effort of the central player. So, let πi(x, xM+1) denote

the payoff to player i when she chooses effort x, and the central player, M + 1, chooses

effort xM+1. Under the Tullock CSF,

πi(x, xM+1) =
xr

xr + xrM+1

V − x. (13)

The expected payoff to the central player depends on her own effort as well as the efforts

of each periphery player. Suppose the periphery players choose efforts according to x =

(x1, . . . , xM). Then, the central player’s expected payoff, πM+1(xM+1,x), is given by,

15Given the symmetric nature of the network, our choice to examine the payoff of Player 1 was arbitrary;
this same analysis could be applied for players 2, or 3.
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πM+1(xM+1,x) =
M∑
i=1

xrM+1

xri + xrM+1

V − xM+1.

If the periphery players follow symmetric strategies, so that x = (x, . . . , x), then the

expected payoff to the central player reduces to,

πM+1(xM+1,x) =
xrM+1

xrM+1 + xr
MV − xM+1. (14)

Studying expressions (13) and (14) it is clear that, when the periphery players adopt

symmetric strategies, the expected payoff of the central player is equivalent to what

his payoff would be in a two-player Tullock contest in which he has value MV and his

opponent chooses effort, x. Moreover, the expected payoff to each periphery player is

equivalent to what her payoff would be in a two-player contest in which she has value

V . A similar symmetry holds under the APA CSF. Note, however, that total equilibrium

effort on the star is greater than it would be in a 2-player asymmetric contest. This is

clearly the case since, on the star network, there are M ≥ 1 periphery players, each of

whom behaves as they would in the 2-player contest.

As shown in Section 3.1, for biregular networks under the Tullock CSF total equilib-

rium effort is linear and increasing in r. This result is consistent with findings in the

contest literature when players have the same prize values. When the prize values are

different, Nti (1999, 2004) shows that this relationship is less clear, and is generally not

monotonic. We obtain a similar finding in our setting when the network is a star.

In what follows, we restrict attention to values of r that permit the existence of a

symmetric pure-strategy equilibrium. Let rM denote the unique solution to the equation

(rM − 1)M rM = 1. (15)

rM is the highest value of r that supports a symmetric pure-strategy equilibrium on a

star with M periphery players (see Lemma 2). Clearly, for any M , rM > 1. Moreover, it

is straightforward to show that rM is strictly decreasing in M , and rM ∈ (1, 2].16

Let X∗M(r) denote total equilibrium effort when there are M periphery players, and

the Tullock CSF parameter is r. Let r∗(M) denote the value of r that maximizes total

16It is well-known that for r ∈ (2,∞) there does not exist a pure-strategy equilibrium under the Tullock
CSF. For such values of r, the mixed-strategy equilibrium shares some common features with equilibrium
under the APA CSF. See, Baye et al. (1994), Alcalde and Dahm (2010), and Ewerhart (2015).
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equilibrium effort:

r∗(M) = arg max
r∈[0,rM ]

{X∗M(r)}.

Our next proposition reveals that total equilibrium effort is in fact a single-peaked function

of r. Moreover, we show that for any fixed r ∈ (0, rM), total equilibrium effort is increasing

in M . That is, as the number of periphery players (and prizes) increases, total equilibrium

effort increases.

Proposition 1. Suppose the network is a star with M ≥ 2 contests, and the CSF is

the Tullock. Equilibrium total effort, X∗M(·), is a single-peaked function, and r∗(·) is a

single-valued function. If M ≥ 4, then r∗(M) ∈ (0, rM) and r∗(M) is characterized by,

r∗(M) ln(M) =
M r∗(M) + 1

M r∗(M) − 1
.

Further, r∗(·) is strictly decreasing and limM→∞ r
∗(M) = 0. Finally, for any M ≥ 2

and r such that r ∈ (0, rM+1), it holds that X∗M+1(r) > X∗M(r).

We first convey the intuition behind the relationship between equilibrium total effort

and the parameter r. Nti (1999) shows that the fraction of each player’s rent that is

dissipated in equilibrium in the asymmetric two-player Tullock contest is non-monotonic

in r. Drawing on the equivalence between individual equilibrium behavior in Nti setting

and our setting, consider the setting studied by Nti. For fixed prize values, when r is close

to zero, the outcome of the contest is largely determined by luck. As a result, players

do not have strong incentives to exert effort. As r increases, the outcome of the contest

depends less on chance, and more on players’ efforts. This provides stronger incentives for

both players to exert effort. However, if the contest is asymmetric enough, as r increases

further, the stronger player – who always exerts more effort than the weaker player –

becomes ever more likely to win the contest. This discourages the weaker player from

exerting effort, which may also mean that the strong player need not exert much effort

in equilibrium. Combining these two effects gives rise to a non-monotonic relationship

between r and total effort.

In our setting, a higher value of M corresponds to a greater degree of asymmetry in

the contest; for M large enough, the value of r that maximizes total effort will be in

the interior of the feasible set; i.e., r∗(M) ∈ (0, rM). As M gets larger, the degree of

asymmetry grows, and the discouragement effect described above is exacerbated. Lower

values of r introduce a greater amount of chance into each contest, which dampens this

effect by reducing the advantage of the stronger player. As a result, r∗(·) is decreasing.
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Finally, as M gets large, the only way to prevent complete discouragement of the periphery

players is by choosing r closer to zero, and so r∗(M) approaches zero as M gets large.

It is also interesting to call attention to the dependency on M of total equilibrium

effort (for fixed r). Note that an increase in M affects effort via two distinct channels.

First, as already discussed, increasing M increases the degree of asymmetry in the contest,

which is akin to increasing the prize value of the strong player in Nti’s (1999) setting.

Nti shows that, ceteris paribus, an increase in the strong player’s prize value increases

his effort, and reduces the effort of the weaker player. The net effect on total effort is

ambiguous. But there’s a second channel in our setting that is absent in Nti’s setting; an

increase in M also increases the number of periphery players. Although the individual

effort of each periphery player decreases, it can be shown that the combined effort of

these M periphery players is increasing in M . The net effect is that an increase in M

unambiguously increases total equilibrium effort under the Tullock CSF.

We next compare the total equilibrium effort on the star under the Tullock and APA

CSFs. Recall that on symmetric networks, equilibrium total effort is always greater under

the APA CSF than under the Tullock CSF. Our next result shows that for star networks,

the opposite conclusion may hold.

Proposition 2. Suppose the network is a star with M contests. Fix r = 1, and suppose

that M ≥ 3. Then equilibrium total effort is higher under the Tullock CSF than under the

APA CSF.

The intuition for Proposition 2 closely relates to that of Proposition 1. As shown

in Proposition 1, under the Tullock CSF total equilibrium effort may be decreasing in r

when M is sufficiently large. But the APA CSF is just the limiting case of the Tullock

CSF as r → ∞. As a result, when M is sufficiently large (in this case, M ≥ 3), so that

there is a sufficient degree of asymmetry in the network, the less cutthroat competition

induced under the Tullock generates greater total effort in equilibrium.

The Exclusion Principle

A rather surprising result from the contest literature is the so-called “Exclusion Princi-

pal”, first demonstrated by Baye et al. (1993). The exclusion principal states that, in

an asymmetric APA with at least 3 players, a contest designer may be able to increase

expected total effort by excluding the player with the highest value. Intuitively, the pres-

ence of the high-value player discourages the other two players from bidding aggressively.

Removing the high-value player “levels the playing field” and encourages fiercer compe-
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tition amongst the remaining players. Fang (2002) shows that the Exclusion Principal

does not carry over to the Tullock CSF. Intuitively, the high level of noise in the Tullock

CSF means that the discouragement effect from having the strong player in the contest

is somewhat mitigated. Leveling the playing field in this case does not stimulate enough

effort from the remaining players to offset the drop in effort caused by the removal of he

high-value player.

We next explore this idea in our network setting. To do so, we compare the expected

total equilibrium effort on an M -hybrid network, with the total effort of the underlying

network. We obtain an exclusion result akin to that of Baye et al under the APA CSF.

In contrast to Fang’s result, we show that a similar exclusion result also holds under

the Tullock CSF in our setting. Before proceeding, let x(g) denote individual expected

equilibrium effort when the network is g. Similarly, let X(g) denote equilibrium expected

total effort when the network is g.

Theorem 3. Let g′ be an M-hybrid network with an underlying network, g, summarized

by [N, dp;M,dc]. Under the APA CSF, X(g) > X(g′) if and only if N > dc. Under the

Tullock CSF, X(g) > X(g′) if and only if

N >
(dc)2 + 1

dc − 1
. (16)

Theorem 3 establishes that if the network structure is an M -hybrid, then a contest

designer may be able to increase total equilibrium effort by excluding the hybrid player.

Under the APA CSF, this exclusion result holds so long as there is some degree of asym-

metry between the hybrid player and the underlying players in the network. This finding

mirrors the results of Baye et al. (1993).

Our exclusion result under the Tullock CSF contrasts existing results from the contest

literature (see, e.g., Fang, 2002; Matros, 2006). The condition given in (16) can be

interpreted as requiring a sufficient degree of asymmetry in the hybrid network. To see

this, note that (16) requires that N is sufficiently large, relative to dc. By the link property

of biregular networks, Ndp = Mdc, when N is large, relative to dc it must mean that dp is

small, relative to M . That is, the hybrid player, who competes in M contests, competes

for sufficiently more prizes than each player in the underlying network (each of these

players compete for dp prizes).

The impact on aggregate behavior of adding a or removing a player from a network,

not only depends on that player’s direct contribution, but also depends on indirect effects

that stem from the player’s influence on the structure of interactions (see, e.g. Ballester

et al., 2006). Previous results on the Exclusion Principle in the contest literature mainly
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focus on one particular pattern of interactions (one in which all players compete for a

single prize); the addition/removal of one player does not affect this structure.17 When

indirect network effects are taken into account, our Theorem 3 suggests that the Exclusion

Principle is a more robust phenomenon than previously thought. The following example

illustrates our finding.

Example 3. Suppose g′ is an M-hybrid with an underlying network, g, where g is sum-

marized by [N, dp;M,dc] = [6, 2; 4, 3]. Consider the Tullock CSF with noise parameter

r = 1, and assume V = 1. Under the APA CSF:

X(g) = MV = 4

and,

X(g′) = dpV = 2.

Under the Tullock CSF:

X(g) =
(dc − 1)

dc
MV =

8

3
≈ 2.667

and,

X(g′) =
(2N + 1− dc)N

(N + 1)2
dpV =

120

49
≈ 2.449.

Summarizing

In this section, we have shown that a number of results from the contest literature can be

obtained by varying the structure of the network in our framework. Table 1 summarizes

these linkages.

17Two exceptions are Dahm and Esteve-Gonzalez (2014) and Dahm (2017). Both studies explore a
particular network structure in which all players compete for a main prize, while a subset of disadvantaged
players also compete for a secondary prize. Dahm (2017) shows that excluding an advantaged player
altogether may increase total effort under the APA CSF, but even greater effort can be generated by only
excluding the advantaged player from competing for the secondary prize.
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Table 1: A Unified Framework

Contest Results and Corresponding Network Structures

Result Related Literature Network Structure

Behavior in
Symmetric Contests

Tullock (1980), Hillman and Riley (1989),
BKD

Biregular Networks

Behavior in
Asymmetric Contests

Hillman and Riley (1989), BKD,
Nti (1999, 2004), Stein (2002),
Matros (2006)

Star Networks

Exclusion Principle
Baye et al. (1993), Fang (2002),
Matros (2006), Menicucci (2006)

M-Hybrid Networks

4 Network Structures

In this section, we explore how the underlying network structure affects equilibrium be-

havior. Consider two biregular networks, g1 and g2, each with N players. Summarize

network gk by [N, dpk,Mk, d
c
k]. Our interest is in assessing how equilibrium behavior varies

with the network parameters, N, dp,M , or dc. Let Vk denote the prize value associated

with each contest when the network structure is gk. We wish to distinguish the impact

of a change in the network structure from, say, an increase in the total value for which

players compete; so, we assume that the total value of all prizes in each network is the

same: M1V1 = M2V2. Note that since the link property, Ndp = Mdc, must hold for the

network to be biregular, one can not assess a ceteris paribus change in one of the network

parameters, and simultaneously preserve biregularity. Nevertheless, our next result cap-

tures some sense in which equilibrium behavior is affected by a change to the structure

of the network.

Theorem 4. Let g1 and g2 be two biregular networks with N players, such that the total

value of all prizes in each network is the same: M1V1 = M2V2. Then under the Tullock

CSF, the following four statements are equivalent:

(i) dp1V1 > dp2V2

(ii) dc1 > dc2

(iii) X(g1) > X(g2)
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(iv) x(g1) > x(g2)

Under the APA CSF, X(g1) = X(g2) and x(g1) = x(g2).

Theorem 4 describes how total and individual equilibrium efforts are affected when

the structure of the network changes, but where the number of players, and the total

value of all prizes in each network is held constant.

To illustrate the result of Theorem 4, consider the two network structures in Figure

6. In each network, there are three players and three prizes. So, if each prize in both

networks is worth V , then the total prize value in each network is 3V . Note that in

the circle network of Figure 6(a), dp = dc = 2; while in the complete network in Figure

6(b) dp = dc = 3. Theorem 4 implies that under the Tullock CSF, the complete network

generates greater individual effort than the circle network. Consider changing the network

structure from the circle network to the complete network. Equilibrium efforts are affected

via two channels. First, in the complete network, each player competes for a greater total

value (3V as compared to 2V ); this effect encourages greater effort from each player.

Second, in the complete network, each player faces more competition in each contest.

Examining the expression for individual effort in Lemma 1, it is clear that an increase

in the number competitors (dc) decreases individual efforts. As it happens, the first

effect always dominates the second effect under the Tullock; hence, the complete network

generates greater total effort than the circle. Under the APA CSF, these two effects

exactly offset one another, leading to the same total and individual expected efforts for

either network structure.

Theorem 4 is also useful for providing insights into the optimal design of networks.

Suppose there are a fixed number of players, N , and a contest designer with a prize budget

of B. The designer chooses a biregular network, with the goal to maximize the sum of
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Figure 3: 3 Examples of symmetric contest networks. Players are represented as hollow nodes and
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equilibrium efforts. In other words, the designer takes N and B as given, and chooses dp,

M , and dc to maximize total equilibrium effort, subject to the constraints Ndp = Mdc

and MV = B.18 As a straightforward consequence of Theorem 4, under the Tullock CSF,

the designer would be indifferent between any complete network structure. This must be

true since, in general dc ≤ N , and for a complete network structure, dc = N . Part (ii)

of Theorem 4 immediately implies that this network structure would indeed maximize

equilibrium efforts, subject to the aforementioned constraints. The following numerical

example illustrates.

Example 4. Let g be a biregular network where N = 3. Suppose that B = 12 and r = 1.

Denote by X∗ total equilibrium effort under the Tullock CSF.

• If M = 1, there is a unique biregular network, and this network is complete: dp = 1

and dc = 3. Total equilibrium effort is

X∗ =
r(dc − 1)

dc
MV =

2

3
B = 8.

• If M = 2, there is a unique biregular network, and this network is complete: dp = 2

and dc = 3. Total equilibrium effort is

X∗ =
r(dc − 1)

dc
MV =

2

3
B = 8.

• If M = 3, then there are two biregular networks:

1. A complete network: dp = dc = 3, which yields total effort of

X∗ =
r(dc − 1)

dc
MV =

2

3
B = 8.

2. A circle network: dp = dc = 2, which yields total effort of

X∗ =
r(dc − 1)

dc
MV =

1

2
B = 6.

Next, suppose the number of prizes is fixed at M , and consider adding a player to

a biregular network, g. The resulting network structure, g′ is thus a σ-hybrid. We

18There is no reason to think that a contest designer should be restricted to only choosing a symmetric
network structure. Yet the purpose of this exercise is to shed light on how the network structure affects
equilibrium behavior.
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have already shown in Lemmas 3 and 7 that, unless σ is sufficiently large, there will

always exist an equilibrium in which the additional player is inactive, and there is no

impact on the behavior of the players in g. Moreover, we showed in Theorem 3 that

if this additional player competes in every contest, and the resulting network structure

is asymmetric enough, then the equilibrium effort of each player in g will decrease, and

total effort in g′ is lower than in g. Finally, consider adding an additional player to a

biregular network in such a way that the biregularity of the network is preserved. Since

the link property, Ndp = Mdc, must hold, it only make sense to answer this question for

complete networks. In a complete network, N = dc. By Lemma 1 it is clear that under

the Tullock CSF, individual equilibrium effort decreases, while total equilibrium effort

increases, following the entry of an additional player. Under the APA CSF, Lemma 5

implies that total expected equilibrium effort is unchanged, and hence individual expected

efforts must fall.

5 Conclusion

In this paper we have proposed a framework for studying contests on networks. We

characterized equilibrium in terms of the underlying network structure, and studied how

this structure affects equilibrium behavior. Furthermore, we have shown that a number

of results from the contest literature may be obtained in our framework by varying the

structure of the network. In addition, we have provided a new exclusion result, akin to

Baye et al.’s (1993) Exclusion Principle, but which is relevant under the Tullock CSF.

This result contrasts the existing literature, and highlights the relevance of network effects

in our model.

6 Appendix

Proof of Lemma 1

Let x∗ be as given in the lemma. We will show that x∗ is a best response to x∗−i ≡
(x∗, ..., x∗). Let Γ(xi,x−i) ≡ ∂πi(xi,x−i,g)

∂xi
. First, we show that Γ(x∗,x∗−i) = 0 and, for

r ≤ dc

dc−1 , the second order condition is satisfied. Finally, we will show that πi(x
∗,x∗−i) > 0.

Since the network is biregular, if player i competes in contest m (so that gim > 0),

then
∑

j 6=i gjm = dc − 1. If player i does not compete in contest m, then gim = 0. Hence,
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for each contest, m, it holds:

gim
∑

j 6=i gjm(∑
j∈N gjm

)2 =
dc − 1

(dc)2
gim.

Then, using (6),

Γ(x∗,x∗−i) =
rV

x∗

∑
m∈M


gim
∑

j 6=i gjm(∑
j∈N gjm

)2

− 1

=
rV

x∗

∑
m∈M

{
dc − 1

(dc)2
gim

}
− 1

=

(
r(dc − 1)

(dc)2
dpV

)
1

x∗
− 1 = 0.

To show that x∗ is in fact a best-reply to x∗−i we now show that the second-order

condition is satisfied, and πi(x
∗,x∗−i,g) ≥ 0. The second-order condition for player i is

∂Γi(xi,x
∗
−i)

∂xi
|xi=x∗ =

(r − 1) dc − 2r

dc
rV (x∗)2r−2

M∑
m=1

(dc − 1)

=
(r − 1) dc − 2r

dc
(dc − 1) rMV (x∗)2r−2 < 0 (17)

The SOC given in equation (17) is satisfied if and only if (r− 1)dc − 2r < 0, which holds

if dc = 2. If dc > 2 then (17) holds if and only if r < dc

dc−2 , which is satisfied under the

condition, r < dc

dc−1 , given in the lemma. Next, we show that πi(x
∗,x∗−i,g) ≥ 0. Note that

πi(x
∗,x∗−i,g) =

M∑
m=1

{
gimx

∗r∑N
j=1 gjmx

∗r
V

}
− x∗ =

dpV

(dc)2
[
dc − r(dc − 1)

]
.

The term in square brackets on the right-hand side (RHS) of the expression above is

positive if and only if r ≤ dc

dc−1 , which establishes that x∗ is a best-reply to x∗−i.

Now, we show that (x∗, ..., x∗) is the unique symmetric equilibrium. Any symmetric

equilibrium, (x′, . . . , x′), must satisfy Γ(x′,x′−i) = 0. However, it is straightforward to

show that Γ(x, x, . . . , x) is strictly decreasing in x. Hence, there is a unique solution to

Γ(x′,x′−i) = 0, which, as shown, is given by x∗.
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Proof of Lemma 2

Suppose the network is a star with N periphery players. The first-order condition for each

periphery player i ∈ {1, . . . ,M} is given in equation (7), and the first-order condition for

the central player, M + 1, is given in (8).

Equations (7) and (8) together imply:

xM+1 =
M∑
i=1

xi. (18)

Suppose that each periphery player i adopts a symmetric strategy: xi = x. Then (18)

implies that xM+1 = Mx. Using equation (7) it is easily verified that

x = x∗ =
M r

(1 +M r)2
rV.

Next, we confirm that the second-order conditions are satisfied. Note that for a star

network, the payoff to each periphery player only depends directly on the effort of the

central player. So, let πi(x, xM+1) denote the payoff to a periphery player, i, when she

chooses effort, x, and the central player chooses xM+1. It may be verified that the second-

order sufficient condition for periphery player i,
∂2πi(xi,x

∗
M+1)

∂x2i
|xi=x∗ < 0, is satisfied if and

only if rM r < M r + 1 + r, which is implied by the condition rM r ≤ M r + 1, given in

the lemma. It may be verified that the second-order condition for the central player is

satisfied for any M ≥ 1.

Finally, we show that πi(x
∗,Mx∗) ≥ 0 if and only if rM r ≤M r + 1. Note that:

πi(x
∗,Mx∗) =

x∗r

x∗r + (Mx∗)r
V − x∗ =

(1 + (1− r)M r)

(1 +M r)2
V.

Thus, πi(x
∗,Mx∗) ≥ 0 if and only if rM r ≤ M r + 1. Note that since each periphery

player earns a non-negative payoff, the central player also earns a non-negative payoff.

Proof of Lemma 3

Let g′ be a 1-hybrid with an underlying network summarized by [N, dp;M,dc]. Assume,

without loss of generality, that the hybrid player, N+1 competes in contest 1. To establish

the lemma, it suffices to show that when each player i ∈ {1, . . . , N} chooses effort x∗,

given in the lemma, then player N + 1 does not have a profitable deviation.

Suppose that each player i ∈ {1, . . . , N} chooses effort x∗. Note that the total effort

expended to each contest by these players is dcx∗ = dc−1
dc
dpV . Then, see that for any
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dc ≥ 2 and dp ≥ 2 it holds that dcx∗ = dc−1
dc
dpV ≥ V . Suppose player N + 1 chooses effort

x ∈ R+; the expected payoff to player N + 1 is:

πN+1(x,x
∗,g′) =

x

x+
∑N

j=1 gj1xj
V − x

=
x

x+ dcx∗
V − x

≤ x

(
V

x+ V
− 1

)
≤ 0

The above inequality is strict if x > 0. Hence, the only best response for player N + 1 is

to choose x = 0.

Proof of Lemma 4

Consider some underlying player i ∈ {1, . . . , N}. Suppose that the underlying players

other than i choose efforts according to, x−i = (x, . . . , x), where x > 0, while the hybrid

player chooses xN+1. If player i chooses effort, xi, her expected payoff is:

πi(xi,x−i, xN+1) =
M∑
m=1

gimxi
(dc − 1)x+ xi + xN+1

V − xi.

The first order condition is

∂πi(xi,x−i, xN+1)

∂xi
=

M∑
m=1

(dc − 1)x+ xN+1

((dc − 1)x+ xi + xN+1)
2 gimV − 1 = 0.

In a symmetric equilibrium, each underlying player chooses the same effort, xj = x∗ for

j ∈ {1, . . . , N}. The first-order condition becomes,

M∑
m=1

(dc − 1)x∗ + xN+1

(dcx∗ + xN+1)
2 gimV =

(g − 1)x∗ + xN+1

(dcx∗ + xN+1)
2 dpV = 1. (19)

In a symmetric equilibrium, the payoff to the central player N + 1 is:

πN+1(xN+1,x
∗) =

xN+1

dcx∗ + xN+1

MV − xN+1.
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The first order condition is
dcx∗

(dcx∗ + x∗N+1)
2
MV = 1. (20)

From (19) and (20), we get

x∗N+1 =
dc(M − dp) + dp

dp
x∗ = (N + 1− dc)x∗. (21)

From (4) and (21),

x∗N+1 = (N + 1− g)x∗. (22)

Finally, (19) and (22) give

x∗ =
N

(N + 1)2
dpV.

It is easy to verify that the second-order conditions are satisfied for all players. More-

over, given efforts, xi = x∗ for all i ∈ {1, . . . , N} and x∗N+1 = (N + 1− dc)x∗, it is easy to

check that the expected payoffs to all players are positive.

Proof of Lemma 5

First, we show that there is a symmetric equilibrium in which each player chooses their

effort according to the distribution function F ∗ (where F ∗ is given in (10)), with support

[0, dpV ]. Let πi(x, F
∗
−i) denote the payoff to player i from choosing effort x ∈ [0, dpV ]

when all other players choose their efforts according to F ∗. See that

πi(x, F
∗
−i) =

∑
m∈M

(
gimV F

∗(x)
∑

j 6=i gjm
)
− x.

Since the network is biregular, if gim = 1 for some m then
∑

j 6=i gjm = dc − 1. Hence,

gimF
∗(x)

∑
j 6=i gjm = gimF

∗(x)d
c−1

So,

πi(x, F
∗
−i) = F ∗(x)d

c−1
∑
m∈M

gimV − x

= F ∗(x)d
c−1 (dpV )− x = 0,

Thus, any x ∈ [0, dpV ] is a best response of player i to F ∗−i. Therefore, there exists
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a symmetric equilibrium in which each player randomizes continuously on the interval

[0, dpV ] according to the distribution function given by (10).

The arguments that establish that this is the unique symmetric equilibrium follow

similar arguments to those made by BKD in the proof of their Theorem 1. In particu-

lar, their arguments may be used to establish the following facts about any symmetric

equilibrium:

(i) All players randomize continuously on [0, dpV ], with strictly increasing CDFs over

this interval.

(ii) Each player earns an expected payoff of 0.

The facts above may be used to establish that there is a unique symmetric equilibrium.

Next, see that the expected effort of each player i in the symmetric equilibrium is

E[x∗] =
1

dc − 1

(
1

dpV

) 1
dc−1

∫ dpV

0

x
1

dc−1dx =
dpV

g
.

The expected total equilibrium effort is

E[X∗] = N × E[x∗] =
Ndp

dc
V = MV.

Proof of Lemma 6

First we show that the strategies described in the lemma constitute an equilibrium. So,

suppose the periphery players, {1, . . . ,M}, bid according to F∗ = (F ∗, . . . , F ∗), where F ∗

is given in the lemma. If the central player, M + 1, chooses x ∈ [0, V ], his expected payoff

is:

πM+1(x,F
∗) = V

M∑
m=1

F ∗(x)− x = V
(
M − 1 +

x

V

)
− x = (M − 1)V.

Hence, the central player is indifferent among all x ∈ [0, V ] and uniform randomization on

[0, V ] is a best-response to F∗. Now suppose the central player bids uniformly on [0, V ];

let G∗ denote this CDF: G∗(x) = x
V
, x ∈ [0, V ]. If periphery player i, chooses effort,

x ∈ [0, V ], then

πi(x,G
∗) =

( x
V

)
V − x = 0

Hence, F ∗ is a best response for player i.
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The arguments that establish that this is the unique symmetric equilibrium follow

similar arguments to those made by BKD in the proof of their Theorem 2. In particu-

lar, their arguments may be used to establish the following facts about any symmetric

equilibrium:

(i) The central player randomizes continuously on [0, V ], with a strictly increasing CDF

over this interval.

(ii) The periphery players follow mixed strategies with support in [0, V ] and place no

mass at any x ∈ (0, V ].

(iii) The periphery players randomize continuously on (0, V ], with strictly increasing

CDFs over this interval.

(iv) The expected payoff of the central player is (M − 1)V , while the expected payoff of

each periphery player is 0.

The facts above may then be applied to establish that there is a unique symmetric

equilibrium.

Now, in the symmetric equilibrium, the central player chooses effort uniformly on

[0, V ]; so his expected effort is E[xM+1] = V
2

. The sum of the expected efforts exerted by

the periphery players is

M∑
i=1

E[xi] = ME[xi] = M

∫ V

0

xdG∗(x) = M

∫ V

0

x

(
V

M

)
dx =

V

2
.

Hence, expected equilibrium total effort is X∗ = V
2

+ V
2

= V .

Proof of Lemma 7

Let g′ be a 1-hybrid with underlying network g summarized by [N, dp;M,dc] with dp ≥ 2.

Let F ∗ be as given in the lemma. It suffices to show that when the underlying players

bid according to F∗ = (F ∗, . . . , F ∗), then the hybrid player’s expected payoff is no greater

than zero: That is, for any x ∈ R+, we will show πN+1(x,F
∗,g′) ≤ 0. First note that we

may restrict attention to x ≤ V , as any x > V guarantees the hybrid player a payoff less

than zero. Also note that 0 ≤ x ≤ V < dpV implies F ∗(x) =
(

x
dpV

) 1
dc−1 . Thus, we have
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πN+1(x,F
∗,g′) = F ∗(x)d

c

V − x

=
( x

dpV

) dc

dc−1
V − x

<
( x

dpV

)
V − x

=
x

dp
− x

≤ 0

The first inequality holds since x
dpV

< 1, and dc

dc−1 > 1. The final inequality holds

since, by assumption, dp ≥ 2, and x ≥ 0.

Proof of Lemma 8

We first show that the strategies given in the lemma constitute a symmetric equilibrium.

Suppose the underlying players, {1, . . . , N}, randomize according to F∗ = (F ∗, . . . , F ∗),

where F ∗ is as given in the lemma. If the hybrid player, N + 1, bids x ∈ [0, dpV ], then

his expected payoff is

πN+1(x,F
∗) =

M∑
m=1

V F ∗(x)d
c − x = (M − dp)V .

Therefore, the hybrid player is indifferent among all x ∈ [0, dpV ]. Hence the mixed

strategy outlined in the lemma for the hybrid player is a best response to F∗. Next,

suppose that the underlying players, other than underlying player i, randomize according

to F∗−i = (F ∗, . . . , F ∗) and the hybrid player randomizes according to G∗, where G∗ is as

given in the lemma. Then, if underlying player i chooses x ∈ [0, dpV ], her expected payoff

is:

πi(x,F
∗
−i, G

∗) =
M∑
m=1

gimV F
∗(x)d

c−1G∗(x)− x = 0.

Therefore, player i is indifferent among all x ∈ [0, dpV ]. Hence, the mixed strategy

outlined in the lemma for player i is a best response to F∗−i and G∗.

The expected equilibrium effort of each underlying player is

E[xi] =

∫ dpV

0

xdF ∗(x) = dpV −
∫ dpV

0

F ∗(x)dx.
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Similarly, the expected equilibrium effort of the hybrid player is

E[xN+1] =

∫ dpV

0

xdG∗(x) = dpV −
∫ dpV

0

G∗(x)dx

= dpV − 1

dpV

∫ dpV

0

x (F ∗(x))1−d
c

dx

= dpV − dcM

dp

(
dpV −

∫ dpV

0

F ∗(x)dx

)
Therefore, total expected equilibrium effort is

X(g′) = N × E[xi] + E[xM+1]

= NdpV −N
∫ dpV

0

F ∗(x)dx+ dpV − dcMV +
dcM

dp

∫ dpV

0

F ∗(x)dx

= dpV

Where the final equality is obtained by applying the link property (4): Ndp = Mdc.

The arguments that establish that this is the unique symmetric equilibrium follow

similar arguments to those made by BKD in the proof of their Theorem 2. In particu-

lar, their arguments may be used to establish the following facts about any symmetric

equilibrium:

(i) The hybrid player randomizes continuously on [0, dpV ], with a strictly increasing

CDF over this interval.

(ii) The underlying players follow mixed strategies with support in [0, dpV ], and place

no mass at any x ∈ (0, dpV ].

(iii) The underlying players randomize continuously on (0, dpV ], with strictly increasing

CDFs over this interval.

(iv) The expected payoff of the hybrid player is (M − dp)V , while the expected payoff of

each underlying player is 0.

These facts can be used to establish that there is a unique symmetric equilibrium.
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Proof of Theorem 1

For the Tullock CSF: Compare the equilibrium characterized in Lemma 1 with the equi-

librium characterized by Tullock (1980). For the APA CSF: Compare the equilibrium

characterized in Lemma 5 with the symmetric equilibrium characterized by BKD (Theo-

rem 1).

Proof of Theorem 2

For the Tullock CSF: Compare the equilibrium characterized in Lemma 2 with the equi-

librium characterized by Nti (1999). For the APA CSF: Compare the equilibrium charac-

terized in Lemma 6 with the equilibrium characterized by Proposition 2 in Hillman and

Riley (1989) or Theorem 3 in BKD.

Proof of Proposition 1

If r ≤ rM , then by Lemma 2 symmetric equilibrium total effort is

X∗M(r) =
2rM r+1V

(M r + 1)2
.

First, we show that X∗M(r) is a single-peaked function of r. Let M ≥ 2 and note that

∂X∗M(r)

∂r
= (r lnM +M r −M rr lnM + 1)

2M r+1V

(M r + 1)3
.

If
∂X∗M (r∗)

∂r
= 0 at some r = r∗, then

r∗ ln(M) =
M r∗ + 1

M r∗ − 1
.

Mext, note that

sign

[
∂2X∗M(r)

∂r2

]
= sign

[
2(1−M2r) + r ln(M)

(
M2r − 4M r + 1

)]
.
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At r = r∗, we get

sign

[
∂2X∗M(r)

∂r2
|r=r∗

]
= sign

[
2(1−M2r∗) +

M r∗ + 1

M r∗ − 1

(
M2r∗ − 4M r∗ + 1

)]
= sign

[
− 1

M r∗ − 1

(
M r∗ +M2r∗ +M3r∗ + 1

)]
< 0, for M ≥ 2.

Thus, if
∂X∗M (r∗)

∂r
= 0, then

∂2X∗M (r)

∂r2
|r=r∗ < 0, which means that X∗M(r) is a single-peaked

function of r.

We now show that r∗(M) < rM for all M ≥ 4. Since X∗M(r) is a single peaked function

of r, it suffices to show that
∂X∗M (r)

∂r
|r=rM < 0. Mote that

sign

[
∂X∗M(r)

∂r
|r=rM

]
= sign

[
M rM + 1− rM(M rM − 1) ln(M)

]
. (23)

If M = 4, then r4 ≈ 1.192; plugging this into (23) for M = 4, one may verify that

sign
[
∂X∗M (r)

∂r
|r=rM

]
< 0. For M ≥ 5 we will show that

∂X∗M (r)

∂r
|r=1 < 0. Since rM > 1 for all

M , and X∗M(r) is a single-peaked function of r, if
∂X∗M (r)

∂r
|r=1 < 0, then

∂X∗M (r)

∂r
|r=rM < 0.

Mote that

sign

[
∂X∗M(r)

∂r
|r=1

]
= sign [M + 1− (M − 1) ln(M)]

and

[M + 1− (M − 1) ln(M)] < 0 for M ≥ 5.

Hence, for M ≥ 4 we have r∗(M) < rM where r∗(M) is characterized by:

r∗(M) lnM =
M r∗(M) + 1

M r∗(M) − 1
. (24)

Although M takes on only discrete integer values, for the moment, suppose that M is a

continuous variable. If M is a continuous variable then (24) defines a continuous function

r̃∗(·); we show in this case that dr̃∗(M)
dM

< 0. This finding immediately implies that r∗(·) is

strictly decreasing, as r∗(M) corresponds to the particular points on r̃(M) when M is an

integer. The Implicit Function Theorem implies

dr̃∗(M)

dM
= − r̃∗(M)

M lnM
< 0.

Thus r∗(·) is strictly decreasing.

We now show that limM→∞ r
∗(M) = 0. Fix ε > 0. We must show r∗(M) < ε for all
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M sufficiently large. Since the expression, Ma+1
Ma−1 is strictly decreasing in a, (24) implies

that r∗(M) < ε if and only if
M ε + 1

(M ε − 1) lnM
< ε. (25)

Mote that, for any ε > 0,

lim
M→∞

M ε + 1

(M ε − 1) lnM
=

(
lim
M→∞

M ε + 1

M ε − 1

)(
lim
M→∞

1

lnM

)
= 1× 0 = 0.

Thus, for M sufficiently large inequality (25) holds, which implies that r∗(M) < ε for M

sufficiently large.

Mext we show that X∗M(r) is increasing in M , for fixed r. Let M ≥ 2 be given. Fix

0 < r < rM+1 < rM ; we show that X∗M+1 (r) > X∗M (r). To establish the result, we will

show that for all m ∈ [M,M + 1] it holds that ∂X∗m(r)
∂m

> 0. Mote that

∂X∗m(r)

∂m
=

2rV nr

(mr + 1)3
[r + 1 +mr − rmr] .

Let Γ(m) = r + 1 +mr − rnr. To establish the result, we must show Γ(m) > 0 for all

m ∈ [M,M + 1]. Mote, however, that Γ(·) is strictly decreasing, so the result follows if

Γ(M + 1) > 0. Recall the definition of rM+1:

(rM+1 − 1)(M + 1)rM+1 = 1.

Mow recall that rM+1 > 1 for any M ; so r ≤ 1 implies (M + 1)r(r − 1) ≤ 0 <

(M + 1)rM+1(rM+1 − 1). For all r > 1, the term, (M + 1)r(r − 1), is strictly increasing in

r, so 1 < r < rM+1 implies (M + 1)r(r− 1) < (M + 1)rM+1(rM+1− 1). Thus, we have the

following:

Γ(M + 1) = r + 1− (M + 1)r(r − 1)

> r + 1− (M + 1)rM+1(rM+1 − 1)

= r + 1− 1

= r > 0

The first strict inequality follows since, as shown above, (M + 1)r(r − 1) < (M +

1)rM+1(rM+1−1). The second equality follows by the definition of rM+1. Thus, Γ(M+1) >

0.
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Proof of Proposition 2

By Lemma 6, it suffices to show that when r = 1, and M ≥ 3 equilibrium total effort

under the Tullock CSF is greater than V . Let XT
M denote equilibrium total effort under

the Tullock when r = 1 and there are M periphery players. Since XT
M is strictly increasing

in N (by proposition 1), we need only show XT
3 > V . By Lemma 2:

XT
3 =

2M2

(M + 1)2
V =

9

8
V > V.

Proof of Theorem 3

Under the APA CSF, it follows immediately from Lemmas 5 and 8 that X(g) > X(g′)

if and only if M > dp. But the link property, (4), implies that M > dp if and only if

N > dc. Under the Tullock CSF, from Lemma 4, total equilibrium effort on the hybrid

network, g′, is

X(g′) = Nx∗ + x∗N+1 =
(2N + 1− dc)N

(N + 1)2
(dpV ) =

(2N + 1− dc)dc

(N + 1)2
MV.

Using Lemma 1, total equilibrium effort on the underlying network, g, is:

X(g) =
dc − 1

dc
MV.

So, X(g) > X(g′) if and only if:

dc − 1

dc
>

(2N + 1− dc)dc

(N + 1)2
,

re-arranging, (
−N +Ndc − (dc)2 − 1

)
(N − dc + 1) > 0.

Since N ≥ dc, the inequality above is equivalent to

(
−N +Ndc − (dc)2 − 1

)
> 0,

or

N >
(dc)2 + 1

dc − 1
.
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Proof of Theorem 4

For k = 1, 2 let X(gk) = Xk and x(gk) = xk. Since both networks have N players,

clearly X1 > X2 if and only if x1 > x2. First suppose the CSF is the Tullock; using the

characterization of equilibrium in Lemma 1, X1 > X2 if and only if
rdc1
dc1−1

M1V1 >
rdc2
dc2−1

M2V2.

But, by assumption, M1V1 = M2V2. So, X1 > X2 if and only if
dc1
dc1−1

>
dc2
dc2−1

, which holds

if and only if dc1 > dc2. Thus, (iv) is equivalent to (iii), and (iii) is equivalent to (ii).

We now show (i) is equivalent to (ii). The link property for biregular networks gives,

for each k = 1, 2: Ndpk = Mkd
c
k. Combining the link property with the assumption,

M1V1 = M2V2, yields
Ndp1V1
dc1

=
Ndp2V2
dc2

; and hence
dp1V1
dp2V2

=
dc1
dc2

, which means dc1 > dc2 if and

only if dp1V1 > dp2V2.

Finally, by Lemma 5, under the APA CSF expected equilibrium total effort in contest

network k = 1, 2 is MkVk. Clearly, each network generates the same total effort since,

by assumption, M1V1 = M2V2. Since X1 = X2, and by assumption each network has N

players, we have x1 = X1

N
= X2

N
= x2.
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