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Abstract

This paper explores a voluntary contribution game in the presence
of warm-glow effects. There are many public goods and each public
good benefits a different group of players. The structure of the game
induces a bipartite network structure, where players are listed on one
side and the public good groups they form are listed on the other side.
The main result of the paper shows the existence and uniqueness of
a Nash equilibrium. The unique Nash equilibrium is also shown to
be locally asymptotically stable. Then the paper provides some com-
parative statics analysis regarding pure redistribution, taxation and
subsidies. It appears that small redistributions of wealth may be neu-
tral, but generally the effects of policy measures depend closely on
how public goods are related in the contribution network structure.
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1 Introduction

In many real life situations, people are organized in social groups with a com-
mon goal whose achievement has the characteristics of a public good (Olson,
1965; Cornes and Sandler, 1986). When individual actions are unobservable,
a joint work by a team of co-workers can be regarded as such (see, e.g.,
Holmstrom, 1982). Colleagues working on a joint project, students working
on a group report, neighbors creating a good social atmosphere or friends
planning a party are only a few examples of social groups providing their
members with a public good.1 As a result, people’s well-being is often de-
pendent on the private (voluntary) provision of many public goods. Securing
the sustainability of these goods, for which generally no market mechanism
exists, is therefore a problem of considerable practical importance.

On the academic side, theoretical work with multiple public goods has
mainly concerned models in which voluntary contributions are driven by
“ pure altruism ”.2 In other words, people are supposed to be indifferent
to the means by which the public goods are provided, and to only care
for the total supply of each public good (Kemp, 1984; Bergstrom et al.,
1986; Cornes and Schweinberger, 1996; Cornes and Itaya, 2010). Controlled
laboratory experiments, however, contradicts this assumption. In practice,
for moral, emotional or even social reasons, people enjoy a private benefit,
commonly called and henceforth referred to as “ warm-glow ”, from the act
of contributing, independently of the utility they gain from the aggregate
amounts of contributions (Andreoni, 1993, 1995; Palfrey and Prisbrey, 1996,
1997; Andreoni and Miller, 2002; Eckel et al., 2005; Gronberg et al., 2012;
Ottoni-Wilhelm et al., 2014).

Although a great deal is known about the effect of warm-glow on the
provision of a single public good (see, e.g., Andreoni, 1990), there exists no
theoretic analysis of voluntary contributions to multiple public goods in the
presence of warm-glow. Further analysis is then required since the extension
to many public goods may be related to different types of strategic behavior
(see, e.g., Cornes and Itaya, 2010). This problem is addressed here by focus-
ing on multiple public goods for which people’s preferences are not separable.
The set of voluntary contributions is modelled as a directed bipartite network
or graph (henceforth, graph) in which contributions flow through links that
connect a set of agents to a set of public goods.3 For example in graph g0 of

1See, e.g., Brekke et al. (2007) for more stylized examples.
2See Becker (1974) for an early analysis of altruism and voluntary contributions.
3Bipartite graphs have previously been used, for example, to model economic exchange

when buyers have relationships with sellers (Kranton and Minehart, 2001), and water
extraction when users draw on resource from multiple sources (Ilkiliç, 2011).
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Figure 1: A bipartite graph with 3 agents and 3 public goods.

Figure 1, where a1, a2, a3 are the agents and p1, p2, p3 are the public goods,
the presence of a link from a1 to p1 captures the fact that a1 belongs to the
group providing p1. This means that a1 can contribute to and benefit from
the provision of p1. The absence of a link from a1 to p3, by contrast, means
that a1 does not belong to the group providing p3, i.e., a1 cannot contribute
to and benefit from the provision of p3. Hence, the bipartite graph reflects ex-
isting membership structure; links represent membership ties between people
and social groups.

Agents are initially endowed with a fixed amount of a private good and
decide on their contributions to the various public goods they are connected
to. Two key assumptions underlie this analysis. First, the warm-glow part of
preferences is separable in each public good. This assumption is consistent
with experimental findings that indicate an imperfect substitution between
the various contributions made by individuals (Reinstein, 2011). People en-
joy warm-glow over contributions to individual public goods, rather than over
their total contribution. Agents are therefore distinguishable in terms of sub-
stitution patterns between public goods. Secondly, the marginal warm-glow
of a contribution decreases in the size of the contribution. This assumption
is consistent with observed behavior of individuals who generally prefer to
make smaller contributions to more public goods (Null, 2011).

The purpose of this paper is to analyze voluntary contributions to several
public goods under warm-glow preferences. The main result establishes the
existence and uniqueness of a Nash equilibrium, regardless of the structure of
the contribution graph. Using a continuous adjustment process, the unique
Nash equilibrium is also shown to be locally stable. Further assuming that
every agent contributes to every public good (as, e.g., in Kemp, 1984)4, the

4Furthermore, the comparative statics results involving corner solutions carry over
exactly from the pure altruism case with many public goods (see Cornes and Itaya, 2010).
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paper extends existing results regarding the effects of pure redistribution,
taxation and subsidies. Specifically, it is shown that public policies often
yield both desirable and undesirable effects whose intensity depends on two
main factors: the topology of the contribution graph structure and the altru-
ism coefficients of all agents. Hence, a significant contribution of this work
lies in the introduction of warm-glow in the literature on multiple public
goods.5 This work also enriches the analysis of public good games played
on fixed networks by considering multidimensional strategies and non-linear
best response functions.6

In the next section, the model of warm-glow giving with multiple pub-
lic goods is presented. In Section 3, the existence of a unique and stable
equilibrium is established. Section 4 solves for the sufficient conditions for
neutrality of wealth redistribution to hold. Section 5 examines the equilib-
rium and efficiency implications of government tax policies. A discussion of
the main contributions and limitations concludes the paper.

2 A model of impure altruism with multiple

public goods

There are n agents a1, . . . , an, m public goods p1, . . . , pm and one private
good. Each agent ai consumes an amount qi of the private good and par-
ticipates to the provision of one or more public goods. The set of possible
contributions is called the contribution structure, which is represented as a
directed bipartite graph g.

To this end, the contribution structure is formalized as a triplet g =
(A, P, L), where A = {a1, ..., an} and P = {p1, ..., pm} are two disjoint sets
of nodes formed by agents and public goods, and L is a set of directed links,
each link going from an agent to a public good. A link from agent ai to public
good pj is denoted as ij. Agent ai is a member of the group providing pj if
and only if ij is a link in L. In this case, agent ai is said to be a potential
contributor to public good pj. It is assumed, without loss of generality, that

5Previous results in this literature are restricted to purely altruistic agents. See Kemp
(1984), Bergstrom et al. (1986) and Cornes and Itaya (2010) for neutrality and other com-
parative statics results. For the design of efficient mechanisms, see Cornes and Schwein-
berger (1996) and Mutuswami and Winter (2004). For the characterization of strategy-
proof social choice functions, see Barberà et al. (1991) and Reffgen and Svensson (2012).

6Much of this literature is concerned with games in which agents decide how much to
contribute to a single public good (i.e., strategies are unidimensional). See Bramoullé and
Kranton (2007), Bloch and Zenginobuz (2007) and Bramoullé et al. (2014) for the case
of linear best responses. For the non-linear case, see Bramoullé et al. (2014), Rébillé and
Richefort (2014) and Allouch (2015).
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Figure 2: Two different contribution structures for the provision
of two public goods.

the corresponding undirected bipartite graph of g, obtained by removing the
direction of the links, is connected.7 Let r(g) be the number of links in L.

Example 1. Figure 2 presents the directed bipartite graphs of two simple
contribution structures g1 and g2. The corresponding undirected graph of
g1 belongs to the class of complete bipartite graphs. Connected graphs of
this class contain m × n links. The corresponding undirected graph of g2

belongs to the class of acyclic bipartite graphs. Connected graphs of this
class contain m + n − 1 links. A large number of contribution structures lies
between these two polar cases.

Given a contribution structure g, let Ng(ai) be the set of public goods to
which ai can potentially contribute, i.e.,

Ng (ai) = {pj ∈ P such that ij ∈ L} ,

and similarly, Ng(pj) is the group of potential contributors to public good pj.
The number of public goods in Ng(ai) and the number of agents in Ng(pj)
are respectively denoted rg(ai) and rg(pj). It is assumed, without loss of
generality, that rg(ai) ≥ 1 for all ai ∈ A and rg(pj) ≥ 2 for all pj ∈ P .

Let xij ≥ 0 be the contribution by agent ai to public good pj. Agent ai

is endowed with wealth wi which he allocates between the private good qi

and his total contribution Xi =
∑

pj∈Ng(ai) xij. For convenience, it is assumed
that each public good can be produced from the private good with a unit-
linear technology.8 It is also assumed that the agents are impurely altruistic,
i.e., an agent ai involved in the provision of a public good pj cares about

7An undirected bipartite graph is connected if any two nodes are connected by a path.
8This assumption is almost innocuous. See, e.g., Bergstrom et al. (1986, p. 31) for a

discussion.
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its total supply Gj =
∑

ai∈Ng(pj) xij, but receives a warm-glow from his own
contribution xij as well.9

The utility function Ui : R
r(g)
+ → R+ of agent ai is given by

Ui =
∑

pj∈Ng(ai)

{bj (Gj) + δij (xij)} + ci (qi) ,

where bj : R+ → R+ is the collective benefit from pj’s total supply, δij :
R+ → R+ is the warm-glow from own contribution to pj, and ci : R+ → R+

is the personal benefit from private consumption.10 Hence, a contribution xij

enters the utility function of ai three times: once as part of Gj, once alone
like a private good, and once as part of qi = wi − Xi. Accordingly, the utility
function of agent ai is not separable with respect to each public good. The
marginal utility with respect to xij does depend on the contributions by ai

to public goods other than pj.
Warm-glow vary from public good to public good, as well as from agent to

agent. Thus, agents can be identified by their marginal rates of substitution,
as in Kemp (1984), Bergstrom et al. (1986), Cornes and Schweinberger (1996)
and Cornes and Itaya (2010). This specification is also consistent with recent
empirical findings by Null (2011) and Reinstein (2011), who show that con-
tributions to multiple public goods are imperfectly substitutable. Moreover,
for the rest of the paper, the following technical assumption is made.

Assumption 1. For each link ij ∈ L, bj, δij and ci are increasing, twice
continuously differentiable functions, with bj concave, δij strongly concave
and ci concave.

The assumption of increasing value functions yields to the Samuelson’s
efficiency condition as in the pure altruism model (see, e.g., Cornes and Itaya,
2010). The rest of the assumption reflects the convexity of preferences with

9There exist at least three alternative approaches to model impure altruism: one in
which people care about the well-being of others (Margolis, 1982; Bourlès et al., 2016),
another one in which voluntary contributions are subject to a principle of reciprocity
(Sudgen, 1984), and a third one in which public goods are jointly produced with private
goods (Cornes and Sandler, 1984).

10When P = {p1}, the utility function of agent ai reduces to

Ui = b1 (G1) + δi1 (xi1) + ci (qi) .

This specification complies with the assumptions of the usual impure altruism model with
a single public good (Andreoni, 1990). It is also a special case of the joint production
model by Cornes and Sandler (1984). This further indicates that the model developped
in this paper is not a direct extension of Bramoullé and Kranton (2007)’s network public
good game.
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respect to each individual contribution. Hence, consistent with empirical
findings (see, e.g., Null, 2011), agents will prefer to distribute their total
contribution between many public goods rather than giving all to a single
public good.11 Assume further, for simplicity only, that the private good
is essential (as, e.g., in Bergstrom et al., 1986), and consider the following
multiple public goods game. Given a contribution structure g, each agent
ai ∈ A faces the optimization problem

max
{xij s.t. pj∈Ng(ai)}, qi

∑

pj∈Ng(ai)

{bj (Gj) + δij (xij)} + ci (qi)

s.t. qi + Xi = wi,

Xi =
∑

pj∈Ng(ai)
xij,

Gj =
∑

ai∈Ng(pj)
xij,

xij ≥ 0, for all pj ∈ Ng(ai).

Pure strategy Nash equilibria under simultaneous decision-making are inves-
tigated.

3 Existence, uniqueness and local stability of

the Nash equilibrium

First, the existence and uniqueness of a Nash equilibrium is established. By
substituting the budget constraint into the utility function, and in turn by
using the specifications for Xi and Gj, the maximization problem of agent ai

is equivalent to

max
{xij s.t. pj∈Ng(ai)}

∑

pj∈Ng(ai)







bj





∑

ai∈Ng(pj)

xij



+ δij (xij)







+ ci



wi −
∑

pj∈Ng(ai)

xij





s.t. xij ≥ 0, for all pj ∈ Ng(ai).

The problem of agent ai is to choose rg(ai) nonnegative numbers. His
strategy space is therefore a subset of the rg(ai)-dimensional Euclidean space,

11Assumption 1, though, does not prevent the model from free-riding effects.
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and the multiple public goods game belongs to the class of the “ concave
N -person games ” studied by Rosen (1965). Using Rosen’s analysis, the
following result is obtained.

Theorem 1. Let Assumption 1 be satisfied. Then, the multiple public goods
game admits a unique Nash equilibrium.

Proof. The proof of Theorem 1, together with all of the other proofs, appears
in the Appendix.

Three comments on Theorem 1 are in order. First, this result extends
the existence and uniqueness result of Andreoni (1990) to the more general
setting of multiple public goods with additive separable utility functions.
Hence, a close inspection of the proof of Theorem 1 shows what is driving
the uniqueness result in the private provision of public goods under warm-
glow preferences. In particular, key to the uniqueness of the Nash equilibrium
is the assumption of strongly concave warm-glow functions. Consequently,
the proof technique of Theorem 1 also provides insights on the reasons for
multiple equilibria when there are many public goods and agents are purely
altruistic as, e.g., in Kemp (1984), Bergstrom et al. (1986) or Cornes and
Itaya (2010).

Secondly, Theorem 1 extends the uniqueness result of Ilkiliç (2011) to
the more general setting of non-linear best response functions. To see this,
consider the first-order condition of ai’s maximization problem with respect
to xij, i.e.,

b′
j (Gj) + δ′

ij (xij) − c′
i (wi − Xi) + µij = 0,

with
µijxij = 0, µij ≥ 0,

where µij is the Karush-Kuhn-Tucker multiplier associated with the con-
straint xij ≥ 0. Ilkiliç (2011) studies a game with linear quadratic utility
functions where a player’s first-order condition would become here

α − βGj − βxij − γXi + µij = 0,

with
µijxij = 0, µij ≥ 0,

where α, β, γ > 0. Hence, the first-order conditions coincide when bj, δij

and ci are some specific concave down quadratic functions. In this case,
Theorem 3 of Ilkiliç (2011), which expresses the equilibrium as a function of
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a network centrality measure (i.e., a modified Bonacich centrality measure),
can be applied to the model presented in this paper.12

Thirdly, it is worth checking whether Theorem 1 carries over heteroge-
neous benefit functions or not. Suppose, for instance, that ai’s utility function
is given by

Ui =
∑

pj∈Ng(ai)

{bij (Gj) + δij (xij)} + ci (qi) ,

where bij : R+ → R+ is ai’s benefit from pj’s total supply. Following the same
lines as in the proofs of Lemma 1 and Theorem 2 in Rébillé and Richefort
(2015), a sufficient condition for the uniqueness of a Nash equilibrium is
that the Jacobian matrix of marginal utilities be a strictly row diagonally
dominant matrix13, which here is equivalent to

δ′′
ij < [rg(pj) − 2] b′′

ij + [rg(ai) − 2] c′′
i ,

for all ij ∈ L. When each agent can potentially contribute to at most two
public goods and each set of potential contributors is composed of exactly
two agents (like for example in graphs g0, g1 and g2), the above condition
is always satisfied. Otherwise, additional conditions on the concavity of the
value functions are needed.

The dynamic stability of the unique Nash equilibrium is now explored.
For this purpose, the best response functions at each link of the contribution
structure are considered. The best response functions specify the optimal
contribution at each link for each fixed contribution level at the other links.
Let G−i,j = Gj −xij denote the sum of all contributions to public good pj by
agents other than ai and Xi,−j = Xi −xij denote the sum of all contributions
by agent ai to public goods other than pj. Under the Nash assumption, G−i,j

and Xi,−j are treated exogenously. Hence, solving the first-order condition
with respect to xij yields the best response

xij = max {0, φij (G−i,j, wi − Xi,−j)} ,

where φij is a non-linear function defined on R. By definition, the solution
of the system of best response functions is the unique Nash equilibrium of
the multiple public goods game.

12This will show that a contribution increases (resp. decreases) with the number of even
(resp. odd) length paths that start from it in the (corresponding undirected) contribution
structure. This result is somewhat consistent with some recent empirical findings by
Scharf and Smith (2016), who show that contribution behavior in social groups is shaped
by personal ties.

13In particular, it can be shown that all Nash equilibria admitted by the multiple public
goods game are solutions to a non-linear complementarity problem (Rébillé and Richefort,
2015). See, e.g., Karamardian (1969) for fundamental results in the field.
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Next, the following autonomous dynamic system is specified: agents con-
tinuously adjust their contributions at each link by choosing the best response
to the contributions at the other links14, that is

ẋij =
dxij

dt
= max {0, φij (G−i,j, wi − Xi,−j)} − xij, for all ij ∈ L.

Obviously, if the dynamic process above converges, it converges to the Nash
equilibrium. Let G∗

j denote the total equilibrium supply of public good pj

and X∗
i denote the total equilibrium contribution by agent ai. Following

Allouch (2015), the links are partitioned into three sets: the set of clearly
active links

B =
{

ij ∈ L s.t. b′
j

(

0 + G∗
−i,j

)

+ δ′
ij (0) − c′

i

(

wi − 0 − X∗
i,−j

)

> 0
}

formed by links that would still be active even after a small change in G∗
−i,j

and X∗
i,−j; the set of inactive links being just at the margin of becoming

active

C =
{

ij ∈ L s.t. b′
j

(

0 + G∗
−i,j

)

+ δ′
ij (0) − c′

i

(

wi − 0 − X∗
i,−j

)

= 0
}

formed by links that might become active after a small change in G∗
−i,j and

X∗
i,−j; and the set of clearly inactive links

D =
{

ij ∈ L s.t. b′
j

(

0 + G∗
−i,j

)

+ δ′
ij (0) − c′

i

(

wi − 0 − X∗
i,−j

)

< 0
}

formed by links that would still be inactive even after a small change in G∗
−i,j

and X∗
i,−j. The following assumption is then made.

Assumption 2. C = D = ∅.

The above assumption restricts the rest of the analysis to interior equi-
libria.15 There are two justifications for it. First, interior equilibria are
more likely to emerge under warm-glow preferences than under pure altru-
ism, in which case agents generally specialize and contribute to only a few
public goods.16 Secondly, the comparative statics involving corner solutions

14The system is adapted from the Cournot literature on multiproduct firms (see, e.g.,
Zhang and Zhang, 1996).

15More specifically, the first part of Assumption 2 puts aside degenerate Nash equilibria
from the analysis. The delicate problem of non-continuously differentiable points in the
best response functions is therefore avoided (see, e.g., Kolstad and Mathiesen, 1987).
Moreover, the stability result given in Theorem 2 for D = ∅ may probably be blown up to
the case D 6= ∅ using tools from linear algebra (see, e.g., Allouch, 2015).

16See, e.g., Cornes and Itaya (2010, p. 364) for a discussion.
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with purely altruistic agents are now well-established (see, e.g., Bergstrom
et al., 1986; Cornes and Itaya, 2010). However, as stated by Andreoni (1990,
p. 466), the trend of results under pure altruism shall be preserved under
warm-glow preferences. Hence, considering corner equilibria here will not
add to the insights of Bergstrom et al. (1986) and Cornes and Itaya (2010).17

Theorem 2. Let Assumptions 1 and 2 be satisfied. Then, the Nash equilib-
rium of the multiple public goods game is locally asymptotically stable.

Theorem 2 extends the stability result of Andreoni (1990) to the more
general setting of multidimensional strategy spaces. A different way to see
this is to solve the first-order conditions with respect to Gj. Under Assump-
tion 2, it appears that

b′
j (Gj) + δ′

ij (Gj − G−i,j) − c′
i (G−i,j − Gj + wi − Xi,−j) = 0.

Totally differentiating this expression and rearranging yields

dGj =
δ′′

ij

b′′
j + δ′′

ij + c′′
i

dG−i,j +
c′′

i

b′′
j + δ′′

ij + c′′
i

(dG−i,j + dwi − dXi,−j) ,

where the term δ′′
ij/(b′′

j +δ′′
ij +c′′

i ) comes from the warm-glow component of ai’s
utility function and denote ai’s marginal willingness to contribute to public
good pj for egoistic reasons, while the term c′′

i /(b′′
j + δ′′

ij + c′′
i ) comes from

the altruistic component of ai’s utility function and denote ai’s marginal
willingness to contribute to public good pj for altruistic reasons. Under
Assumption 1, these terms are between zero and one, meaning that all warm-
glow, all public goods and the private good are supposed to be normal, just
like in the single public good case.

4 Neutral redistributions of wealth

The inefficiency of the Nash equilibrium is a well-established outcome of
voluntary contribution models (see, e.g., Cornes and Sandler, 1986). Public
goods are under-produced because contributions are strategic substitutes and
produce positive externalities. Hence, agents have incentives to contribute
less than the optimal level. To minimize this inefficiency, it is important to

17Another possible justification for Assumption 2 may be that agents must be active,
even very slightly, to secure their memberships in groups. The interiority of the equilibrium
would then be the result of group formation processes, not studied in this paper and well
worth exploring in future research. See, e.g., Brekke et al. (2007) for the analysis of a
group formation game in which group membership is only available to active agents.
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have a better understanding of individual reactions to various public policies,
as well as welfare effects of these policies. This section examines the effects
of wealth transfers between agents. For this purpose, a slightly stronger
assumption about the convexity of individual preferences is stated.

Assumption 1’. For each link ij ∈ L, bj, δij and ci are increasing, twice
continuously differentiable functions, with bj concave, δij strongly concave
and ci strongly concave.

Moreover, similarly to the stability analysis, it is also assumed that all
links are active and that the set of active links remains unchanged after the
redistribution (Assumption 2’). This means that transfers must not be too
large. Next, the altruism coefficient defined by Andreoni (1990) is extended
to the multiple public goods case: the altruism of agent ai with respect to
public good pj is given by

αij =
c′′

i

δ′′
ij + c′′

i

∈ (0, 1).

If ai has high altruism with respect to pj, δ′′
ij will be close to zero, so αij will

be close to one. If ai has low altruism with respect to pj, δ′′
ij will be high, so

αij will be close to zero. More generally, the lower the relative absolute value
of δ′′

ij, the nearer αij is to one, hence the more agent ai can be thought of as
having high altruism with respect to public good pj. The following partial
neutrality result is obtained.

Proposition 1. Let Assumptions 1’ and 2’ be satisfied. Then, a wealth
transfer between any agents such that

∑

ai∈A dwi = 0 will not change the
total supply of each public good whenever agents have identical altruism with
respect to each public good, i.e., αij = αj for all ij ∈ L, and the contribution
structure g is complete.

A few comments on Proposition 1 might be useful. First, a contribution
structure is said to be complete whenever each agent is involved in the pro-
vision of all public goods, in other words, whenever each agent is a member
of each social group and can therefore potentially contribute to the provision
of each public good. Such a membership structure is depicted in Figure 3.
Along with Assumption 2’, this means that every agent contributes, at least
a little, to every public good.18 This is a fairly strong assumption. Thus,

18An example of such a situation is given in Kemp (1984), in which agents are countries
and public goods are international pure public consumption goods or global-level common-
pool resources. In this case, warm-glow can be thought of as being a local, country-
specific benefit derived from own contribution. For instance, national policy measures to
protect the environment provide benefits which are both local (i.e., private) and global
(i.e., collective). See, e.g., Kaul et al. (1999) for more details and examples.
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Figure 3: Contribution structure with n agents and m public goods,
candidate for neutral redistributions of wealth.

consistent with empirical findings (see, e.g., Hochman and Rodgers, 1973;
Reinstein, 2011), the above result shows first of all that redistributions of
wealth will generally not be neutral.

However, when every agent contributes to every public good, Proposition
1 shows that pure altruism is indeed sufficient for neutrality: if αij tends
to one for all ij ∈ L, then dGj tends to zero for all pj ∈ P , as in Kemp
(1984) and to a lesser extent as in Cornes and Itaya (2010), although in this
case, the equilibrium may not be unique and stable (see, e.g., Rébillé and
Richefort, 2015). But Proposition 1 also shows that pure altruism is only one
of the cases in which small redistributions of wealth are neutral. In fact, this
property holds whenever agents are equally altruistic with respect to each
public good, as long as the contribution structure is complete and all links
are active.19

Regardless of the structure of the contribution graph, the proof of Propo-
sition 1 shows that a transfer between any two agents, say agents a1 and a2,
such that dw1 = −dw2 = dw > 0, has an effect on the supply of each public
good such that

dGj = kj (α1j − α2j) dw − kj

∑

ai∈Ng(pj)

αijdXi,−j, for all pj ∈ P ,

where kj ∈ (0, 1]. Three simple cases are now discussed in more details.

19For example, quadratic value functions such that

δij (xij) = xij −
θj

2
x2

ij and ci (qi) = qi −
ψ

2
q2

i

for all ij ∈ L, where θj , ψ ∈ (0, 1/wi), fulfil the neutrality condition over the altruism
coefficients.
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b

a1 a2

. . .
an−1 an

p1

g4

dw

Figure 4: Wealth transfer from agent a2 to agent a1

in presence of n agents and a single public good.

• In presence of a single public good, the above result reduces to the
same expression obtained by Andreoni (1990), i.e.,

dG1 = k1 (α11 − α21) dw,

where k1 ∈ (0, 1]. The transfer does not change G1 if and only if
α11 = α21. It has the desired effect on G1 if and only if α11 > α21. In
this case, the only possible contribution structure is the complete n×1
bipartite graph, depicted in Figure 4.

• When there are two agents and two public goods, the contribution
structure is also always complete (see the 2 × 2 bipartite graph g1). In
this case, a transfer from a2 to a1 such that dw1 = −dw2 = dw > 0
yields

dG1 = k1 [α11 (dw − dx12) − α21 (dw + dx22)]

and
dG2 = k2 [α12 (dw − dx11) − α22 (dw + dx21)] ,

where k1, k2 ∈ (0, 1]. If α1j = α2j = αj for a given public good pj,
the transfer does not change Gj if and only if it does not change Gl.
Accordingly, if α1j = α2j for all pj, the transfer does not change G1

and G2 simultaneously. Furthermore, if α1j > α2j for a given public
good pj, the transfer increases Gj if it decreases Gl, and vice versa.
Hence, if αi1 > αk1 and αi2 > αk2 for a given agent ai, where ak is
the other agent, the transfer might increase or decrease G1 and G2

simultaneously.
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• When there are three agents and two public goods, the contribution
structure may not be complete. If the third agent is connected to both
public goods, four contribution structures, depicted in Figure 5, are
possible. In the complete graph g8, a transfer of wealth from a2 to a1

yields

dG1 = k1 [α11 (dw − dx12) − α21 (dw + dx22) − α31dx32]

and

dG2 = k2 [α12 (dw − dx11) − α22 (dw + dx21) − α32dx31] ,

where k1, k2 ∈ (0, 1]. Thus, it is easy to show that the above conclusions
from the 2 × 2 bipartite graph still hold. Suppose now that some links
are removed, as in graphs g5, g6 and g7. The contribution structure
is therefore no longer complete. In these graphs, the transfer might
increase or decrease G1 and G2, simultaneously or not, depending on
the altruism coefficients of the three agents. Moreover, it is clear that
neutrality could only be fortuitous, because of the incompleteness of
the contribution structure.

Lastly, Proposition 1 can also be expressed as follows.

Proposition 2. Let Assumptions 1’ and 2’ be satisfied, and let the contri-
bution structure g be complete. Then, the total supply of each public good
is independent of the distribution of wealth if and only if each best response
function can be written in the form

xij = φ∗
ij (G−i,j) + αj (wi − Xi,−j) ,

where αj ∈ (0, 1), φ∗
ij is a decreasing function for all ij ∈ L, and αj is

identical across all agents for any pj ∈ P .

For complete contribution structures, the class of best response functions
specified in Proposition 2 will be sufficient for each public good to be inde-
pendent of redistributions of wealth. However, if both the set of public goods
and the consumption of the private good are required to be independent of
wealth redistributions, an additional condition on the altruism coefficients is
necessary. Totally differentiating the best response functions in Proposition
2 yields

dxij = φ∗
ij

′dG−i,j + αj (dwi − dXi,−j) .

Assuming dGj = 0 and rearranging, it appears that

dwi = dXi,−j +
1 + φ∗

ij
′

αj

dxij.

Hence, full neutrality requires that αj = 1 + φ∗
ij

′ for all ij ∈ L.
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dw
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a1 a2 a3
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g7

dw

b b b

b b

a1 a2 a3

p1 p2

g8

dw

Figure 5: Wealth transfer from agent a2 to agent a1

in presence of three agents and two public goods.

5 Subsidies and direct grants

In this section, it is assumed that public goods may be provided both publicly
and privately.20 Suppose that each individual contribution xij is subsidized
at a rate sij ∈ (0, 1) by the government and suppose that these subsidies are
financed through lump sum taxes τij > 0. All net tax receipts are dedicated
to the provision of public goods, either through subsidies towards individual
contributions, or through direct grants.

For all pj ∈ P , let Tj =
∑

ai∈Ng(pj) {τij − sijxij} be the government’s net

tax receipts with respect to public good pj, and let G̃j = Gj +Tj be the joint
supply of public good pj. The utility function of agent ai is now given by

Ui =
∑

pj∈Ng(ai)

{

bj

(

G̃j

)

+ δij (xij)
}

+ ci (qi) .

20The effects of government intervention on the private provision of public goods has a
long tradition in economics. The main question is to know to which extent public provision
crowd out private contributions. See, e.g., Abrams and Schmitz (1984), Andreoni (1993),
Eckel et al. (2005), Gronberg et al. (2012) and Ottoni-Wilhelm et al. (2014) for empirical
studies on this issue.
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Let x̃ij = xij(1−sij)+τij represents ai’s contribution to public good pj. Then,
ai’s budget constraint becomes wi = qi + X̃i, where X̃i =

∑

pj∈Ng(ai) x̃ij. It
follows that ai’s maximization problem may be written

max
{x̃ij s.t. pj∈Ng(ai)}

∑

pj∈Ng(ai)







bj





∑

ai∈Ng(pj)

x̃ij



+ δij

(

x̃ij − τij

1 − sij

)







+ ci



wi −
∑

pj∈Ng(ai)

x̃ij





s.t. x̃ij − τij ≥ 0, for all pj ∈ Ng(ai).

Similarly to the stability analysis and the neutrality analysis, it is assumed
that all links are active and that the set of active links remains unchanged
after a (small) change in lump sum taxes and/or subsidies (Assumption

2”). Hence, substituting X̃i = x̃ij + X̃i,−j and G̃j = x̃ij + G̃−i,j into the
first-order condition of ai’s maximization problem with respect to x̃ij yields

b′
j

(

x̃ij + G̃−i,j

)

+
1

1 − sij

δ′
ij

(

x̃ij − τij

1 − sij

)

− c′
i

(

wi − x̃ij − X̃i,−j

)

= 0.

Solving this with respect to x̃ij yields the best response

x̃ij = φij

(

G̃−i,j, sij,
τij

1 − sij

, wi − X̃i,−j

)

.

The third argument comes from the warm-glow component of ai’s utility
function. The second argument, sij, appears because of the expression mul-
tiplying ai’s marginal warm-glow function in the first-order condition. The
altruism coefficient is now given by

α̃ij =
c′′

i

δ′′

ij

(1−sij)2 + c′′
i

∈ (0, 1).

The effects of changing lump sum taxes are first analyzed.

Proposition 3. Let Assumptions 1’ and 2” be satisfied, let the contribution
structure g be complete, and let α̃ij = α̃j for all ij ∈ L. Then, any increase
(resp. decrease) in the lump sum taxes with respect to a given public good,
say public good p1, will:

(i) increase (resp. decrease) the total supply of p1,

(ii) decrease (resp. increase) the total supply of any other public good,
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(iii) increase (resp. decrease) the total amount of contributions.

The above proposition establishes that direct grants financed by lump
sum taxation will incompletely crowd out private contributions. Regardless
of the structure of the contribution graph, the proof of Proposition 3 shows
that changing lump sum taxes affects the total supply of each public good
such that

dG̃j = k̃j

∑

ai∈Ng(pj)

{(1 − α̃ij) dτij − α̃ijdX̃i,−j}, for all pj ∈ P ,

where k̃j ∈ (0, 1]. In presence of a single public good, the above result reduces
to the same expression obtained by Andreoni (1990), just like in the previous
section. In this case, any change in the lump sum taxes has the desired effect
on the total supply of the single public good, and since agents are impurely
altruistic, the crowding out effect is incomplete because agents always prefer
the bundle with the highest warm-glow.

In a complete contribution structure composed of equally altruistic agents
with respect to each public good, changing lump sum taxes with respect to
a given public good, say p1, yields

dG̃1 = k̃1 (1 − α̃1) dτ1 − k̃1α̃1

∑

pj∈P \{p1}

dG̃j

and
dG̃l = −k̃lα̃l

∑

pj∈P \{pl}

dG̃j, for all pl ∈ P\{p1},

where dτ1 =
∑

ai∈Ng(p1) dτi1 and k̃j ∈ (0, 1] for all pj ∈ P . Hence, any change
in τ1 produces desired effects on the total supply of p1 and undesired effects
on the total supply of any other public good pl. Moreover, these effects
depend on the altruism of all agents with respect to each public good: the
more altruistic the agents are with respect to p1, the lower the change in the
total supply of p1, while the more altruistic the agents are with respect to
any other public good pl, the higher the change in the total supply of pl.
This result is therefore consistent with the empirical findings by Feldstein
and Taylor (1976) and Reece (1979), who show that different public goods
(thus inducing different warm glow effects) exhibit different responses to tax
policy changes.

A similar result is now established with subsidies.

Proposition 4. Let Assumptions 1’ and 2” be satisfied, let the contribution
structure g be complete, and let α̃ij = α̃j for all ij ∈ L. Then, any increase
(resp. decrease) in the subsidy rates with respect to a given public good, say
public good p1, will:
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(i) increase (resp. decrease) the total supply of p1,

(ii) decrease (resp. increase) the total supply of any other public good,

(iii) increase (resp. decrease) the total amount of contributions.

In presence of a single public good, subsidies are always more desirable
than direct grants because impurely altruistic agents prefer to contribute
directly rather than indirectly (Andreoni, 1990). To check the robustness of
this fact when there are multiple public goods, suppose that the government
raises the subsidy rates with respect to public good p1 and finances this by
raising lump sum taxes with respect to p1. Totally differentiating the best
response functions and rearranging as in the proofs yields

dG̃1 =

k̃1

∑

ai∈Ng(p1)

{

(1 − α̃i1) dτi1 +
(

α̃i1κi1 + (1 − α̃i1)
τi1

1 − si1

)

dsi1 − α̃i1dX̃i,−1

}

,

where κi1 > 0. In a complete contribution structure composed of equally
altruistic agents with respect to each public good, it holds that

dG̃1 = k̃1 (1 − α̃1) dτ1 − k̃1α̃1

∑

ai∈A

dX̃i,−1 + k̃1

∑

ai∈A

{(

α̃1κi1 + (1 − α̃1) τi1

1−si1

)

dsi1

}

= dG̃1

∣

∣

grants
+ k̃1

∑

ai∈A

{(

α̃1κi1 + (1 − α̃1) τi1

1−si1

)

dsi1

}

> dG̃1

∣

∣

grants
> 0,

and since dG̃l is a linear decreasing function of dG̃1,

dG̃l < dG̃l

∣

∣

∣

grants
< 0, for all pl ∈ P\{p1}.

Hence, lump sum taxes with respect to p1 spent on subsidizing contributions
rather than on direct grants yield two opposite effects. On one hand, they
have a bigger desired effect on the total supply of p1, just like in the single
public good case, but on the other hand, they have a bigger undesired effect
on the total supply of any other public good.

It is therefore interesting to check whether subsidies or direct grants
Pareto-dominate. Suppose that direct grants dedicated to the provision of
public good p1 are increased by dτi1. Totally differentiating ai’s utility func-
tion yields

dUi|grants = Ki −
δ′

i1

1 − si1

dτi1,

where Ki =
∑

pj∈Ng(ai) {b′
jdG̃j + δ′

ijdx̃ij/(1 − sij)}−c′
idX̃i. Now, suppose that

direct grants dedicated to the provision of p1 and subsidies with respect to p1
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are increased simultaneously by (dτ̂i1, dsi1), so that the same change in the
equilibrium supply of each public good and in ai’s equilibrium contributions
occurs. Totally differentiating ai’s utility function yields

dUi|subsidies = Ki −
δ′

i1

1 − si1

(dτ̂i1 − xi1dsi1) ,

where xi1 = (x̃i1 − τi1)/(1 − si1) ≥ 0. From the above, it is known that
dτ̂i1 ≤ dτi1. Hence, in a complete contribution structure composed of equally
altruistic agents with respect to each public good,

dτ̂i1 − xi1dsi1 ≤ dτi1 ⇐⇒ dUi|subsidies ≥ dUi|grants .

Consequently, an increase in the subsidy rates will increase utility more than
an equivalent increase in direct grants.

6 Conclusion

This paper explores a voluntary contribution game with m public goods in
which players enjoy warm-glow for their contributions. Each public good
benefits a different group of players. Players are initially endowed with a
fixed amount of a private good and decide on their contributions to the
various public good groups they are affiliated to. Under this framework,
the contribution structure forms a bipartite graph between the players and
the public goods. The main result of the paper is to show the existence
and uniqueness of a Nash equilibrium. The local asymptotic stability of the
unique equilibrium is also established.

Then the paper provides some comparative statics analysis regarding pure
redistribution and public provision. When applied to the case of m = 1, the
results presented in this paper give the same conditions as those obtained
in the existing literature. However, the results of the simple case cannot be
extended to the more general setting of multiple public goods: in general, the
neutrality conditions for m public goods in isolation are not generalizable to
m related public goods. Moreover, the impact of direct grants and subsidies
depends closely on how public goods are related in the contribution graph
structure.

It is likely that the comparative statics results presented in this paper can
be extended further by relaxing the requirement on the completeness of the
contribution structure. In fact, the comparative statics analysis will not be
over until conditions on the contribution structure will be found which are
both necessary and sufficient. This could probably be achieved by considering
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some specific, tractable utility functions. Furthermore, the results on the
existence, uniqueness and stability of the Nash equilibrium do not impose
any structural requirements. They are based on properties of individual
preferences, and may eventually be extended to the general class of network
games of strategic substitutes with multidimensional strategy spaces and
non-linear best response functions.

Appendix

Given a contribution structure g, let xg stand for the column vector of con-
tributions: xg is the link by link profile of contributions and has size r(g).
The links in xg are sorted in lexicographic order: the contribution xij is listed
above the contribution xkl when i < k or when i = k and j < l. For the
contribution structures g1 and g2 given in Figure 3,

xg1
=











x11

x12

x21

x22











and xg2
=











x11

x21

x22

x32











.

The Nash equilibrium of the multiple public goods game is noted x∗
g.

Proof of Theorem 1. Because of the budget constraints, the allowed contri-
butions are limited by the requirement that xg be selected from a convex and
compact set S such that

S =
∏

ij∈L

[0, wi] ⊂ R
r(g)
+ .

Then, the existence of a Nash equilibrium follows from fixed point arguments
(such as Kakutani fixed point theorem) as in Theorem 1 of Rosen (1965).

To prove the uniqueness of the Nash equilibrium, Theorems 2 and 6 of
Rosen (1965) are applied, which entails that the Nash equilibrium of the
multiple public goods game is unique whenever the r(g) × r(g) Jacobian
matrix of marginal utilities J(xg) is a symmetric negative definite matrix for
all xg ∈ S. Observe that, for all ij ∈ L,

∂2Ui

∂xkl∂xij

(xg) =







































b′′
j (Gj) + δ′′

ij (xij) + c′′
i (wi − Xi) , for kl ∈ L s.t. kl = ij;

c′′
i (wi − Xi) , for kl ∈ L s.t. k = i and l 6= j;

b′′
j (Gj) , for kl ∈ L s.t. k 6= i and l = j;

0, for kl ∈ L s.t. k 6= i and l 6= j,
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so J(xg) is a symmetric matrix which can be decomposed as

J (xg) = B (xg) + ∆ (xg) + C (xg) ,

where B(xg) is the Jacobian matrix of marginal collective benefits, ∆(xg)
is the Jacobian matrix of marginal warm-glow, and C(xg) is the Jacobian
matrix of marginal private consumption. Both B(xg), ∆(xg) and C(xg) are
symmetric matrices. Moreover, ∆(xg) is a diagonal matrix with all diagonal
elements negative since under Assumption 1, δ′′

ij(.) < 0 for all ij ∈ L. Then,
∆(xg) is negative definite for all xg ∈ S. In the following lemmas, it is
shown that both B(xg) and C(xg) are negative semidefinite for all xg ∈ S,
so J(xg) is a sum of a symmetric negative definite matrix and two symmetric
negative semidefinite matrices. Hence, J(xg) is symmetric negative definite
for all xg ∈ S, and uniqueness is established.

Lemma 1. B(xg) is negative semidefinite for all xg ∈ S.

Proof. To show that B(xg) is negative semidefinite for all xg ∈ S, it is proved
that there exists a matrix Rg, with possibly dependent columns, such that
−B(xg) = Rg

TRg (see Strang, 1988, p. 333). Observe that, for all ij ∈ L,

−
∂2bj

∂xkl∂xij

(xg) =







−b′′
j (Gj) , for kl ∈ L s.t. l = j;

0, for kl ∈ L s.t. l 6= j,

so −B(xg) is a symmetric matrix. For s ∈ {1, . . . , m}, let vs ∈ R
r(g)
+ be such

that

vs
ij =







√

−b′′
j (Gj), for ij ∈ L s.t. j = s;

0, for ij ∈ L s.t. j 6= s.

Define Rg as a partitioned matrix such that

Rg
T =

(

v1 . . . vm
)

r(g)×m
.

It is straight forward to check that −B(xg) = Rg
TRg, so B(xg) is negative

semidefinite for all xg ∈ S.

Lemma 2. C(xg) is negative semidefinite for all xg ∈ S.

Proof. Let’s prove that there exists a matrix Rg such that −C(xg) = Rg
TRg.

Observe that, for all ij ∈ L,

−
∂2ci

∂xkl∂xij

(xg) =







−c′′
i (wi − Xi) , for kl ∈ L s.t. k = i;

0, for kl ∈ L s.t. k 6= i,
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so −C(xg) is a symmetric matrix. For t ∈ {1, . . . , n}, let wt ∈ R
r(g)
+ be such

that

wt
ij =











√

−c′′
i (wi − Xi), for ij ∈ L s.t. i = t;

0, for ij ∈ L s.t. i 6= t.

Define Rg as a partitioned matrix such that

Rg
T =

(

w1 . . . wn
)

r(g)×n
.

It is straight forward to check that −C(xg) = Rg
TRg, so C(xg) is negative

semidefinite for all xg ∈ S.

Proof of Theorem 2. Under Assumption 2, the dynamic system reduces to

ẋij = φij (G−i,j, wi − Xi,−j) − xij, for all ij ∈ L.

Let Z(xg) be the r(g) × r(g) Jacobian matrix of the function zij(xg) =
φij(G−i,j, wi − Xi,−j) − xij for all ij ∈ L. To prove the local asymptotic
stability of the Nash equilibrium, the Lyapunov’s indirect method is applied,
which entails that the Nash equilibrium of the multiple public goods game
is locally asymptotically stable whenever the real part of each eigenvalue of
Z(x∗

g) is negative.21

Under Assumption 2, observe that, for all ij ∈ L,

∂zij

∂xkl

(xg) =











































−1, for kl ∈ L s.t. kl = ij;

−c′′

i
(wi−Xi)

b′′

j
(Gj)+δ′′

ij
(xij)+c′′

i
(wi−Xi)

, for kl ∈ L s.t. k = i and l 6= j;

−b′′

j
(Gj)

b′′

j
(Gj)+δ′′

ij
(xij)+c′′

i
(wi−Xi)

, for kl ∈ L s.t. k 6= i and l = j;

0, for kl ∈ L s.t. k 6= i and l 6= j,

so Z(xg) is an asymmetric matrix which can be decomposed as

Z (xg) = Y (xg) J (xg) ,

where J(xg) is the Jacobian matrix of marginal utilities and Y(xg) is a di-
agonal matrix with all diagonal elements positive, i.e.,

[Y (xg)]
ij,ij

= −
1

b′′
j (Gj) + δ′′

ij (xij) + c′′
i (wi − Xi)

> 0, for all ij ∈ L.

21See, e.g., Theorem 1 in Khalil (2002).
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Then, Y(xg) is a symmetric positive definite matrix for all xg ∈ S. It has
been shown in the proof of Theorem 1 that under Assumption 1, J(xg) is a
symmetric negative definite matrix for all xg ∈ S. It follows that −Z(xg) is
the product of two symmetric positive definite matrices, Y(xg) and −J(xg).
By Theorem 2 in Ballantine (1968), all the eigenvalues of −Z(xg) are real
and positive for all xg ∈ S. Thus, all the eigenvalues of Z(x∗

g) are real and
negative, and local asymptotic stability of the Nash equilibrium is estab-
lished.

Proof of Proposition 1. Totally differentiating the best response functions at
each link ij ∈ L yields

dxij =
∂φij

∂G−i,j

dG−i,j +
∂φij

∂(wi − Xi,−j)
(dwi − dXi,−j) .

Under Assumption 2’, it follows that

dxij = −
b′′

j

b′′
j + δ′′

ij + c′′
i

dG−i,j +
c′′

i

b′′
j + δ′′

ij + c′′
i

(dwi − dXi,−j) ,

or equivalently, since dG−i,j = dGj − dxij,

dxij = −
b′′

j

δ′′
ij + c′′

i

dGj + αij (dwi − dXi,−j) .

Summing across all ai ∈ Ng(pj) and solving for dGj yields

dGj = kj

∑

ai∈Ng(pj)

{αij (dwi − dXi,−j)} , for all pj ∈ P , (1)

where

kj =



1 +
∑

ai∈Ng(pj)

b′′
j

δ′′
ij + c′′

i





−1

∈ (0, 1] .

Since αij = αj for all ij ∈ L, Equation (1) becomes

dGj = kjαj

∑

ai∈Ng(pj)

{dwi − dXi,−j}, for all pj ∈ P .

Moreover, since g is a complete bipartite graph, it holds that Ng(ai) = P for
all ai ∈ A, and equivalently Ng(pj) = A for all pj ∈ P . Hence,

∑

ai∈Ng(pj)

dwi =
∑

ai∈A

dwi = 0
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and
∑

ai∈Ng(pj)

dXi,−j =
∑

ai∈A

dXi,−j =
∑

pl∈P \{pj}

dGl.

It follows that, for all pj ∈ P ,

dGj = −kjαj

∑

pl∈P \{pj}

dGl.

From this last equation, it appears that

∑

pl∈P

dGl =
(

1 −
1

k1α1

)

dG1 = . . . =
(

1 −
1

kmαm

)

dGm,

so it holds that
sign (dG1) = . . . = sign (dGm) .

Then, for all pj ∈ P ,

sign (dGj) = sign

(

∑

pl∈P \{pj}
dGl

)

= sign

(

kjαj

∑

pl∈P \{pj}
dGl

)

= sign (−dGj)

if and only if dGj = 0.

Proof of Proposition 2. When the contribution structure is complete, a best
response function of the form given is sufficient since identical values of the
altruism coefficient among all agents with respect to each public good is
sufficient. The remainder of the proof is therefore devoted to the necessary
condition.

Under Assumption 2’, xij = φij(G−i,j, wi − Xi,−j) holds for all agents.
Since dGj = 0 for all pj ∈ P , the total differential of the best response
functions given in the proof of Proposition 1 yields

dxij = αj (dwi − dXi,−j) , for all ij ∈ L,

where αj = αj(x
∗
g). This implies that φij(G−i,j, wi − Xi,−j) is linear in wi −

Xi,−j. Then, it holds that

xij = φij (G−i,j, wi − Xi,−j) = φ∗
ij (G−i,j) + αj (wi − Xi,−j) , for all ij ∈ L,

where φ∗
ij is decreasing since ∂φij/∂G−i,j = −b′′

j /(b′′
j + δ′′

ij + c′′
i ) ≤ 0.
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Proof of Proposition 3. Totally differentiating the best response functions at
each link ij ∈ L while keeping dsij = dwi = 0 yields

dx̃ij =
∂φij

∂G−i,j

dG−i,j +
∂φij

∂( τij

1−sij
)

×
1

1 − sij

dτij −
∂φij

∂(wi − Xi,−j)
dXi,−j,

or equivalently,

dx̃ij = −
b′′

j

b′′
j +

δ′′

ij

(1−sij)2 + c′′
i

dG−i,j +

δ′′

ij

(1−sij)2

b′′
j +

δ′′

ij

(1−sij)2 + c′′
i

dτij −
c′′

i

b′′
j +

δ′′

ij

(1−sij)2 + c′′
i

dXi,−j .

Rearranging as in the proof of Proposition 1 yields

dG̃j = k̃j

∑

ai∈Ng(pj)

{

(1 − α̃ij) dτij − α̃ijdX̃i,−j

}

, for all pj ∈ P , (2)

where

k̃j =





1 +
∑

ai∈Ng(pj)

b′′
j

δ′′

ij

(1−sij)2 + c′′
i







−1

∈ (0, 1] .

Let τj =
∑

ai∈Ng(pj) τij denote the total lump sum taxes with respect to public
good pj. Since the contribution structure is complete and α̃ij = α̃j for all
ij ∈ L, Equation (2) can be rearranged as

dG̃j = k̃j (1 − α̃j) dτj − k̃jα̃j

∑

pl∈P \{pj}

dG̃l, for all pj ∈ P .

Hence, assuming that dτ1 6= 0 and dτl = 0 for all pl ∈ P\{p1} yields

dG̃1 = k̃1 (1 − α̃1) dτ1 − k̃1α̃1

∑

pl∈P \{p1}

dG̃l

and
dG̃l = −k̃lα̃l

∑

pj∈P \{pl}

dG̃j, for all pl ∈ P\{p1}.

From this last equation, it appears that

∑

pj∈P

dG̃j =

(

1 −
1

k̃2α̃2

)

dG̃2 = ... =

(

1 −
1

k̃mα̃m

)

dG̃m. (3)

Hence, it holds that

dG̃l = βldG̃1, for all pl ∈ P\{p1}, (4)
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where

βl =



−
1

k̃lα̃l

−
∑

pj∈P \{p1,pl}







1 − 1
k̃lα̃l

1 − 1
k̃j α̃j











−1

∈ (−1, 0).

Now, let dτ1 > 0 and suppose that dG̃1 ≤ 0. Then, from Equation (4),
dG̃l ≥ 0 for all pl ∈ P\{p1}, and therefore, from Equation (3),

∑

pj∈P dG̃j ≤
0. Hence,

−dG̃1 ≥
∑

pl∈P \{p1}

dG̃l ≥ 0.

It follows that

dG̃1 = k̃1 (1 − α̃1) dτ1 − k̃1α̃1
∑

pl∈P \{p1}
dG̃l

≥ k̃1 (1 − α̃1) dτ1 − k̃1α̃1

(

−dG̃1

)

= k̃1 (1 − α̃1) dτ1 + k̃1α̃1dG̃1.

Then, it appears that

dG̃1

(

1 − k̃1α̃1

)

≥ k̃1 (1 − α̃1) dτ1 ⇐⇒ dG̃1 ≥
k̃1(1 − α̃1)

1 − k̃1α̃1

dτ1 > 0,

a contradiction. The same contradiction can easily be obtained under the
assumption that dG̃1 ≥ 0 when dτ1 < 0. Hence, sign(dτ1) = sign(dG̃1) =
sign(−dG̃l) for all pl ∈ P\{p1} = sign(

∑

pj∈P dG̃j).

Proof of Proposition 4. Totally differentiating the best response functions at
each link ij ∈ L while keeping dτij = dwi = 0 yields

dx̃ij =
∂φij

∂G−i,j
dG−i,j +

∂φij

∂sij
dsij +

∂φij

∂(
τij

1−sij
)

×
τij

(1 − sij)2
dsij −

∂φij

∂(wi −Xi,−j)
dXi,−j ,

or equivalently,

dx̃ij = −
b′′

j

b′′
j +

δ′′

ij

(1−sij)2 + c′′
i

dG−i,j −

δ′

ij

(1−sij)2 −
δ′′

ijτij

(1−sij)3

b′′
j +

δ′′

ij

(1−sij)2 + c′′
i

dsij −
c′′

i

b′′
j +

δ′′

ij

(1−sij)2 + c′′
i

dXi,−j .

Rearranging as in the proof of Proposition 1 yields

dG̃j = k̃j

∑

ai∈Ng(pj)

{(

α̃ijκij + (1 − α̃ij)
τij

1 − sij

)

dsij − α̃ijdX̃i,−j

}

,

for all pj ∈ P , (5)
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where

κij =

∂φij

∂sij

∂φij

∂(wi−X̃i,−j)

=
−

δ′

ij

(1−sij)2

c′′
i

> 0,

and k̃j ∈ (0, 1] as in the proof of Proposition 3. Since the contribution
structure is complete and α̃ij = α̃j for all ij ∈ L, Equation (5) can be
rearranged as

dG̃j = k̃j

∑

ai∈A

{(

α̃jκij + (1 − α̃j)
τij

1 − sij

)

dsij

}

− k̃jα̃j

∑

pl∈P \{pj}

dG̃l,

for all pj ∈ P .

Hence, assuming that dsi1 6= 0 for at least one agent ai ∈ Ng(p1) and dsil = 0
for all ai ∈ Ng(pl) for all pl ∈ P\{p1} yields

dG̃1 = k̃1

∑

ai∈A

{(

α̃1κi1 + (1 − α̃1)
τi1

1 − si1

)

dsi1

}

− k̃1α̃1

∑

pl∈P \{p1}

dG̃l

and
dG̃l = −k̃lα̃l

∑

pj∈P \{pl}

dG̃j, for all pl ∈ P\{p1}.

From this last equation, observe that Equations (3) and (4) hold, and since

α̃1κi1 + (1 − α̃1)
τi1

1 − si1

> 0, for all ai ∈ A,

the same contradiction as in the proof of Proposition 3 can easily be obtained.
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