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Abstract

People choose friendships with people similar to themselves, i.e. they sort by resemblence.

Economic studies have shown when sorting is optimal and constitute an equilibrium, however,

this presumes lack of beneficial spillovers. We investigate formation of economic and social

networks where agents may form or cut ties. We combine a setup with link formation where

agents have types that determine the value of a connection. We provide conditions for sorting

in friendships, i.e. that agents tend to partner only with those with those sufficiently similar

to themselves. Conditions are provided with and without beneficial spillovers from indirect

connections. We show that sorting may be suboptimal, yet a socially stable outcome, despite

otherwise obeying the conditions for sorting in Becker (1973). We analyze policy tools to

mitigate suboptimal sorting.

Keywords: network formation; underconnectivity; assortative matching; network externalities;

one-sided matching.
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1 Introduction

A ubiquitous finding in studies of social relations is the tendency to form more ties with peo-

ple similar to one-self, i.e. the pattern known as sorting or homophily cf. the meta-study by

McPherson et al. (2001). Pioneered by Becker (1973) economic research has contributed to the

understanding of sorting by providing mathematically sufficient conditions for when marriage-

and labor markets and groups get sorted and when this is optimal. Yet, no attention has been

devoted whether the condition for optimality of Becker (1973) on sorting are valid in the context

of network externalities. Our investigation yields new insights on network formation by rational
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agents: when is sorting stable and/or suboptimal if beneficial network externalities are either

present or not? In addition, we demonstrate how to enact policies to curb sorting when exces-

sive, and thus provide higher welfare. These new insights can help policymakers to design better

schools or corporations.

A modest tendency to sort may be beneficial by forming communities that with high synergies

and shared values. Conversely, too much sorting can be detrimental, e.g. by slowing down the

dissemination of information, see Golub and Jackson (2012). As recent decades have seen a rise in

residential income segregation and assortative mating by education it is a great concern for policy

makers how to tackle the problems that stems from increased sorting.1 The insights from our

analysis are essential to understand the indirect effects of sorting. For instance, specific smaller

programs aimed at bridging students from different backgrounds can be effective at mitigating

the inefficacy of the social structure that would arise without interventions. It is also relevant

for understanding indirect consequences of dividing school cohorts by ability, as is the current

practice in many countries (cf. OECD (2012)); such a division impacts not only the direct social

peers of the students but also severs the bridge for transmission of positive externalities.

Our framework explores a setting with agents choosing partners under three core assumptions.

First, agents are heterogeneous in type for creating value in partnerships (which can be interpreted

as a peer effect). Type may refer to productive and non-productive capabilities such as skill, social

aptitude or interests and ethnicity. Second, there are possible externalities from friends of friends

as in the ’connections model’ of Jackson and Wolinsky (1996) which captures spillovers of ideas

and favors (which does not contain types). Third, agents choose a limited number of partners

reflecting constraints of time and effort.2 Note our framework could also model corporations or

self-governing organizations forming bilateral partnerships among themselves. In this setting, we

investigate robustness of network structures in the following sense: no agents can form and/or

delete links from network and be better off when allowing for transfers of utility. Most of our

results require only pairwise (Nash) equilibrium and thus only requires stability against bilateral

deviations. One result requires the strong (Nash) equilibrium where any coalition of agents can

form links between themselves.

Our central contribution is to show the general existence of networks sorted by type that

are stable yet suboptimal in terms of welfare and that this inferior situation can be alleviated

by implementing a welfare enhancing network. Our paper does this by building a parsimonious

framework uniting the frameworks of Becker (1973) and Jackson and Wolinsky (1996). Along

with the main results we also make a number of smaller contributions toward the understanding

of conditions for sorting. The results established in this paper contribute to the game theoretic

knowledge on formation of network as well as homophily and assortative matching.

Our generalization of sorting are relevant for further investigations of homophily in social

1See Reardon and Bischoff (2011) on segregation and Schwartz and Mare (2005) on marriage sorting.
2Limited partners is also consistent with empirical research; Ugander et al. (2011) shows this for the entire

Facebook network and Miritello et al. (2013) in phone calls for millions of people.
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networks. Moreover, we provide a clear intuition how pathological sorting constitutes an unde-

sirable outcome despite being the only stable configuration of a social network under conceivable

circumstances. The intuition is analogue to a classic public goods problem: there is a lack in

the provision of links across types. This indicates that sorting, a generic network structure com-

monly observed, is likely to suffer from inefficiencies in network formation. Finally, to mitigate

the sorting issue we demonstrate the validity of a policy instrument that provides incentives to

link across types.

Contributions and literature In what follows we explain our results and discuss them in

relation to the literature. We begin with the vast literature on optimal networks under external-

ities. The field has a long tradition and begins with the general formulation under the quadratic

assignment problem Koopmans and Beckmann (1957). The field gained traction when Katz and

Shapiro (1985); Farrell and Saloner (1986) showed stable but inefficient outcomes can arise in two-

sided markets with externalities. The field was revolutionized by Jackson and Wolinsky (1996)

demonstrating there is an incompatibility in networks between the stability and efficiency; Bloch

and Jackson (2007) extends these results to show the tension is preserved when allowing for more

coordination and more flexible transfers between agents.

Unlike the above papers we do not provide any new generic insights. Instead we show existence

of a general class of inefficient networks which has the property of being sorted in type and

constitute the unique equilibrium under plausible conditions. Specifically we demonstrate that

when Becker (1973)’s complementarity condition holds and that there are sufficiently many agents

of each type as well as only a moderate level of externalities then the set of pairwise (Nash) stable

networks equals a certain set of sorted networks; this set of sorted networks is shown to be non-

empty and to consist only of networks that are perfectly sorted where any two agent within a given

type is connected (not linked) and each agent uses all its quota of links. We also show that any

network in this set is inefficient (under moderate externalities) due to a lack of connectivity across

types. For more information, see Theorem 1 for the case of non-constant decay (or Theorem 3

in Appendix B for constant decay). In addition, we show this problem of sub-optimality can be

mitigated through policy, see Proposition 3.

A seminal mathematical work on sorting and segregation is Schelling (1969, 1971). Schelling’s

use models of residential segregation across space to show that only small preferences on com-

position of neighbors are necessary to yield high segregation. Although related the modeling

differences between Schelling’s spatial model and networks/matchings are stark; the latter ones

have a more flexible setup allowing for connections between any individuals and network effects.

The only paper that investigates inefficient sorting in networks is de Mart́ı and Zenou (2017);

they also model type complementarity and positive externalities.3 Their results show existence of

sorted networks that are stable yet inefficient due to the lack of linking across types.4 Although

3Note this paper was developed independently and without awareness of de Mart́ı and Zenou (2017).
4In de Mart́ı and Zenou (2017) results on stable sorting are found in Propositions 1.ii, 4.iii while Proposition 6
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similar there are some profound and crucial differences that motivates our analysis. Compared

with de Mart́ı and Zenou (2017) our setup uses exogenous complementarity while they use en-

dogenous complementarity. This difference, and a few technical ones,5 allows us to considerably

strengthen results: we establish that sorting constitutes the unique set of stable networks; we

show there exist a globally efficient network that is sorted but has connectivity between groups

and demonstrate that this network is implementable through a simple policy, see Proposition

3; finally, our results are neither limited to only five agents of each type, nor sub-structures of

within-type networks being either stars or cliques, nor is it limited to only two types.

The fundamental difference in how complementarity between our setup and de Mart́ı and

Zenou (2017) means that our results should be interpreted differently. Our results are relevant in

cases when we do not expect endogenous complementarity, e.g. in skills, personal interests or to

some extent geography. In addition, the modeling of complementarity also entails that the source

of inefficiency is different. In our setup suboptimality stems from misaligned incentives (due

sorting be the unique stable outcome) which is in line with the incompatibility of efficiency and

stability of Jackson and Wolinsky (1996); no one wants to volunteer to build the bridge between

communities. On the contrary, in de Mart́ı and Zenou (2017) suboptimality may be due to a

lack of coordination on implementing another stable network that is welfare improving.6 Finally

our framework is carefully chosen to directly build on Becker (1973), and as a consequence our

results have strong implications for the literature on assortative matching.

The most relevant research on exogenous complementarity in networks is Johnson and Gilles

(2000); Jackson and Rogers (2005); Galeotti et al. (2006); the first assumes agents all have a

unique type with linking costs proportional to their distance while the two latter use an islands

type of model (where agents have same type). Johnson and Gilles (2000) shows existence of a

pairwise stable equilibrium with local connectivity between adjacent types, possibly with local

cliques where all agents within a given range are connected. Jackson and Rogers (2005) shows

that clustering and short paths are robust features among both pairwise stable networks efficient

networks with full linkage among same type. Galeotti et al. (2006) investigates minimally con-

nected networks in a setup with one-sided link formation.7 None of the above papers investigate

the problem with the network being ‘underconnected’ explored in this paper.

Of lower importance we also make a number of specific contributions towards the understand-

contains result on inefficiency.
5One noteworthy difference is that we model cost implicitly through an identical quota on the number of

links and that we use value complementarity. These two differences entails that our study directly extends the
assortative matching framework to a networks setting. de Mart́ı and Zenou (2017) models cost explicitly with
complementarity such that there are low linking costs with same types. Another difference is that we use the
slightly stronger equilibrium concept than their use of pairwise stability; this change is necessary when modeling
cost through a degree quota.

6Results in de Mart́ı and Zenou (2017) do not rule out there can exist stable networks (e.g. some amount of
connectivity between groups) that are more efficient than a sorted network. This follows as de Mart́ı and Zenou
(2017) have multiplicity in equilibria and they only establish relative inefficiency between two networks (complete
network and perfectly sorted network of cliques).

7Note that one-sided link formation is based on the setup of Bala and Goyal (2000) which only requires the
weaker equilibrium concept, Nash stability, as links do not need mutual acceptance.
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ing of assortative matching. We establish sufficient conditions for stable networks to exhibit

sorting in type. In the simple case without externalities our Proposition 1 extends the classic

work to a one-sided matching setting with many partners. In the case of externalities we provide

various results, including a characterization, as outlined above. Finally our Proposition 4 estab-

lishes that if the agent population is large then sorting is the unique strongly stable outcome (i.e.

the core) when Becker’s complementarity condition hold and that externalities satisfy asymptotic

independence in social connections.

The work related to stability of sorting has a strong tradition for two-sided matching e.g. labor

and dating markets starting with Becker (1973). The research on one-sided assortative matching,

i.e. the basis for our setup, has been limited to formation of clubs (equivalent to cliques in

networks) under various technologies cf. Farrell and Scotchmer (1988), Kremer (1993), Durlauf

and Seshadri (2003), Legros and Newman (2002), Pycia (2012), Baccara and Yariv (2013). All the

research on one-sided assortative matching finds conditions for sorting which correspond to type

complementarity in Becker (1973). Yet, none of these papers allow for linking between groups nor

consider network externalities which are the extensions we treat. Note that Proposition 1 can be

seen as a direct extension of the classic result by Becker (1973) for networks without externalities

- our contribution is to propose a new measure of sorting which is tractable in equilibrium.

We round off the literature review with noting there is another strand of literature on ho-

mophily in network formation, see Currarini et al. (2009, 2010); Bramoullé et al. (2012). Their

approach, however is different: we use a one period model with strategic link formation while

they rely on matching sequences that are dynamic and stochastic. Currarini et al. (2009, 2010)

investigate show how differences in community sizes play a role in explaining empirical phenom-

ena, including homophily, assortativity. Bramoullé et al. (2012) investigates the conditions for

long run integration of a network.

Paper organization The paper proceeds as follows: Section 2 introduces the model; Section

3 investigates sorting under no externalities; Section 4 analyzes the setting with externalities,

focusing on sorting and its potential sub-optimality, and; Section 5 concludes in a discussion of

assumptions. All proofs are found in Appendix A.

2 Model

Let N = {1, .., n} constitute a set of agents. Each agent i ∈ N is endowed a fixed measure of

type, xi ∈ X where X ⊂ R is the set of realized levels of types for agents in N . Let x̄ = maxX

and
¯
x = minX. Let agents’ type be sorted descending in their label and let X = (x1, x2, ..., xn)

where xl ≥ xl+1 for l = 1, .., n− 1.

Linking and networks Two agents i, j ∈ N may link if mutually accepted; a link may be

broken by both agents. A link between i and j is denoted ij ∈ µ where the set µ consists of links
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and is called a network. The set of all networks is denoted M = {µ|µ ⊆ µc} where µc is the

complete network in which all agents are linked.

A coalition of agents is a group t ⊆ N such that t ∈ T where T is the superset of N excluding

the empty set. For a given group t define X (t) as the vector of types ordered descending for

agents in t. A coalitional move is a set of actions implemented by a coalition that moves the

network from one state to another. A move from µ to µ̃ is feasible for coalition t if: added links,

µ̃\µ are formed only between members of coalition t; deleted links, µ\µ̃ must include a member

of coalition t.

Network measures The neighborhood, ν, is the set agents whom an agent links to: νi(µ) =

{j ∈ N : ij ∈ µ}. The number of neighbors is called degree and denoted ki(·) for i. A path is a

subset of links {i1i2, i2i3, ..., il−1il} ⊆ µ where no agent is reached more than once. The distance

between two agents i, j in a network is the length of the shortest path between them - this is

denoted pij : M → N0; when no path exists then the distance is infinite.

Utility The utility accruing to agent i is denoted ui. An agent’s utility equals benefits less

costs, expressed mathematically as ui = bi − ci. The aggregate utility is denoted U(·).
We model costs of linking indirectly through an opportunity cost of linking. We do this

through a (degree) quota on links, κ, which is the maximum number of links for any agent, i.e.

for i ∈ N it holds ki(·) ≤ κ. We say there is no linking surplus when all agents have a degree

equal to the degree quota, i.e. ∀i ∈ N : ki = κ.

Benefits to agent i is a weighted sum consisting of two elements; network and individual value:

bi(µ) = Σj 6=iwij(µ) · zij (1)

The network factor, wij(µ) is a function of network distance. The individual link value is

zij which measures the personal value to i of linking to j - the value is a function of the two

partners’ type zij = z(xi, xj). The function z is assumed twice differentiable as well as taking

positive and bounded values.8 Let the total link value be defined as the value of linking for the

pair, i.e. Zij = zij + zji.

In order to derive results a restriction of payoffs is necessary. The essential feature of the total

link value for sorting is complementarity in type:9

Definition 1. The link value has supermodularity if ∂2

∂x∂yZ(x, y) > 0 - this entails:

Z(x, x̃) + Z(y, ỹ) > Z(x, y) + Z(x̃, ỹ), x > ỹ, x̃ > y. (2)

The network components is further restricted in the analysis under externalities in Section 4.

8The upper bound rules out an infinite number of links in equilibrium.
9Complementarity between type corresponds to cheaper link between same/similar types used in the models of

Johnson and Gilles (2000); Jackson and Rogers (2005); Galeotti et al. (2006).

6



The game framework This paper explores a static setting of one period. Agents’ information

about payoffs of other agents is complete. Together the players, action, utility and information

constitutes a game we will now outline the stability concept for.

Any pair of agents can transfer ’utility’ between them. Let a net-transfer from agent j to

agent i be denoted as τij ∈ R such that τij = −τji which implies non-wastefulness of utility. The

matrix of net transfers is denoted τ . For each agent i its net-payoff is defined as si = ui(µ)+Στij .

In addition it is assumed that the net-transfer between two agents with a link can only be changed

if this change is mutually agreed or the link is broken.

Stability We define network stability using the concept of coalitional moves. A coalition t is

blocking a network µ with net-transfers τ if there is a feasible coalitional move from network µ

to network µ̃ with τ̃ where all members in t have higher net-payoff after the move.

We employ two concepts of stability. The first is strong stability : this is satisfied for a network

if there exist transfers such that no coalition (of any size) may have a feasible move which is

profitable for all its members. The second concept, pairwise (Nash) stability,10 is similar but has

weaker requirements: it holds when there exist transfers such that no coalitions of at most two

agents may block. The sets of stable networks are denoted respectively M s−stb and Mp−stb. A

further discussion of the stability concepts is found in Section 5.

Our pairwise definition of stability is stricter than that of Jackson and Wolinsky (1996). How-

ever, the stricter requirement enables substitution of links (simultaneous deletion and formation)

which is a necessary requirement for establishing results in the matching literature.11

A noteworthy feature is that strong stability implies pairwise stability; thus any condition valid

for pairwise stability also applies to strong stability. In addition without network externalities

every pairwise stable network is also strongly stable, see Lemma 1. Note also that any strongly

stable network requires efficiency (coalition of all agents can implement any network). Thus we

can employ efficiency to derive structure in strongly stable networks.

3 Analysis: no externalities

This brief section analyzes the setting where network externalities are absent and thus indirect

connections are irrelevant.

We begin with defining our measure of sorting. The concept of sorting that we employ is a

generalization of the sorting when there is a single partner such as Becker’s marriage market.

The shape of sorting is such that a high type agent has partners which weakly dominate in type

when compared partner-by-partner with the partners of a lower type agent. Note the comparison

is done over the sorted set of partners type X . The sorting pattern is mathematically defined as:

10This is also known as bilateral stability, cf. Goyal and Vega-Redondo (2007)
11For instance, pairwise stability coupled with and Becker (1973)’s condition for sorting, i.e. supermodularity,

would not imply that sorting be the unique pairwise stable outcome in the marriage market as in Becker (1973).
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Definition 2. Sorting in type holds in µ if for all pair i, j such that xi > xj it holds that:

X (νi(µ)/{j})l ≥ X (νj(µ)/{i})l+l∗ , ∀l ∈ {1, .., k∗},

where k∗ = min(ki(µ), kj(µ)) and l∗ = max(kj(µ)− ki(µ), 0).

Our first result is that sorting in type emerges under the same conditions as in Becker (1973)

when network externalities are absent:

Proposition 1. If there is supermodularity and no externalities then for any pairwise stable

network there is sorting in type.

The proof of this proposition follows by establishing that pairwise stable network must be

strongly stable without externalities; then we use that strongly stable networks are efficient and

show that sorting in type must hold under efficiency.

4 Analysis: externalities

We proceed to a more general context where indirect connections matter for utility. Whenever

we allow for externalities we restrict our attention to forms of linking utility.

wij(µ) =

δpij(µ)−1, constant decay,

1=1(pij(µ)) + δ · 1∈[2,∞)(pij(µ)), hyperbolic decay,
(3)

where 1∈(1,∞)(l) is the Dirac measure/indicator function of whether 1 < l <∞.

The first and more general setting is where utility from connections decays over increas-

ing distance at a constant exponential rate - this corresponds to benefits from linking in the

’connections-model’ from Jackson and Wolinsky (1996). The other case is when externalities

from indirect connections are discounted equally at any distance if there is a connection, i.e. a

finite path length. This second case is referred to as hyperbolic decay and entails that there is

no decay beyond that from distance one (linked) to distance two.

The introduction of externalities to our framework implies that the pairwise utility no longer

depends only on the total link benefits. As a consequence sorting is not guaranteed to be neither

stable nor efficient. The intuition for this is straight forward: externalities entails that the total

welfare from sorting is internalized for the pair while the total welfare for indirect connections

are not internalized. We see this by inspecting the utility functions. Suppose that ĝ is a pairwise

deviation such that agents i, j form a link. Then the pairwise total net utility from deviation can

be expressed as follows under externalities:

ui(ĝ) + uj(ĝ)− ui(g)− uj(g) = Zij +
∑

k∈{i,j}, l /∈N\{i,j}

zkl ·
(
δpkl(ĝ) − δpkl(g)

)
(4)
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From the analysis of the previous section we found that in the absence of externalities then

sorting prevails; in the above this correspond to the net utility of deviating equaling Zij . Therefore

we see that the total benefits to sorting are preserved for the pair.

The total benefits to all agents that accrues from agents i, j forming a link are:

U(µ̂)− U(µ) =ui(µ̂) + uj(µ̂)− ui(µ)− uj(µ) +
∑

l /∈N\{i,j}

[ul(µ̂)− ul(µ)]

=ui(µ̂) + uj(µ̂)− ui(µ)− uj(µ) +
∑

l /∈N\{i,j}, l′∈N, l′ 6=l

Zll′ · (wll′(µ̂)− wll′(µ)) (5)

Inspection of Equation 5 informs us that the pairwise utility of linking does not capture the

aggregate gains from linking; moreover we see that the gains not captured correspond to the

indirect benefits that others receive from the deviation. This implies there is a disparity between

the pairwise incentives and total welfare: the pairwise incentives captures the full benefits of

sorting but not the full gains to lower distances between agents.

4.1 Finite population

We begin with the situation where there are a finite number of agents. Before starting the main

analysis of networks under externalities we will define type self-sufficiency. This holds when each

type has more agents than the degree quota, see below. Self-sufficiency of types is important for

perfect sorting where it is a necessary condition for feasibility when requiring no link surplus. We

briefly investigate the situation when type self-sufficiency does not hold, i.e. nx ≤ κ for one or

more types x ∈ X. Some immediate conclusions are possible to derive:

Definition 3. A type x ∈ X is self-sufficient if nx > κ.

Proposition 2. Suppose there is supermodularity and type self-sufficiency does not hold:

(i) if n ≤ κ+ 1 then {µc} = Mp−stb = MmaxU ;

(ii) if n > κ+ 1 and there are two types where nx̄ = n
¯
x, then a network where every agent has

nx̄ − 1 same-type links and κ− nx̄ + 1 cross-type links is stable and efficient.

We move on to examining supoptimal sorting. We will show that a class of sorted networks are

suboptimal when introducing network externalities. This sub-optimality holds despite fulfilling

the Becker’s complementarity, i.e. supermodularity. Our aim is to find equilibria of the kind

where each type of agent only link among themselves, we naturally may call perfect sorted:

Definition 4. A network µ is perfect sorted (in type) if xi = xj for any ij ∈ µ. Denote the

set of perfectly sorted networks as Mp−srt.

We note that the remainder of this subsection is restricted in two ways. Firstly, by confining

our analysis to the setting where there is type self-sufficiency (i.e. ∀x ∈ X : nx > κ). Secondly,
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(A): Segregated network, µ.

Pairwise stable if δ ≤ δ̄(Ẑ).

(B): Pairwise move by agent 1, 6

who form a link together and

remove links 13, 46 respectively.

(C): Connected network, µ̃.

Efficient if δ ≥
¯
δ(Ẑ).

Figure 1: Sorted network is stable but inefficient. The above three networks depict Example 1.
The network in (A) is pairwise (Nash) stable for some parameters and the network in (B) is the
only kind of feasible deviation. The network in (C) is an efficient network.

this subsection exclusively investigates the case with hyperbolic decay as it provides for more

intuitive and more immediate results without restrictions on the network. As noted earlier, a

more general exposition is found in Supplementary Appendix B.

We begin our analysis by exhibiting a simple illustration of the problem. Let excessive sorting

refer to a network with perfect sorting according to type where the segregated groups could

collectively benefit from connecting. However, they fail to connect as incentives do not internalize

externalities under pairwise network formation. The relevant set of networks are those networks

which are perfectly sorted but within each type all agents are connected. Let networks which are

perfectly sorted and connected among each type be denoted:

Mp−srt:conn = {µ ∈Mp−srt | ∀i, j ∈ N, xi = xj : pij(µ) <∞}

The are interested in showing there exists an open region of thresholds (
¯
δ, δ̄) such that if

the level of externalities is within the region then any network in Mp−srt:conn where there is no

degree surplus is pairwise (Nash) stable for some transfers τ but inefficient. An introduction to

this problem is found in Example 1 below in a stylized, simple manner. The example is graphically

represented in Figure 1.

Example 1. There are six agents; three of high type (1,2,3) and three of low type (4,5,6). More-

over, there is supermodularity, degree quota of two (κ=2) and constant decay. Define two net-

works: a network with perfect sorting, µ = {12, 13, 23, 45, 46, 56}, see Figure 1.A; a network which

is bridged of µ, defined as µ̃ = {12, 23, 34, 45, 56, 61}, see Figure 1.C. We show in this example

that for a range of decay-factors that µ is pairwise stable yet suboptimal.

In this setup there is a unique move which is both feasible and payoff relevant.12 This move

12Under pairwise stability at most one link can be formed in a single move. Without transfers all formed links
have value and thus deletion of a link always leads to a loss. Thus only coalitional moves where new links are
formed can be valuable. For network µ all links to same types are already formed. Thus only forming a link with
the other types.
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consists of forming a link across types when both delete a link. Such a move could be agents 1,6

forming a link while deleting links to 3 and 4 which we denote µ̂ = µ∪{16}\{13, 46} and seen as

Figure 1.B. Benefits for agents 1 and 6 from network µ and deviating from it are:

u1(µ̂) + u6(µ̂) = (1 + δ) · [z(x̄, x̄) + z(
¯
x,

¯
x)] + [1 + 2δ] · [z(x̄,

¯
x) + z(

¯
x, x̄)],

= (1 + δ) · 1
2 · [Z(x̄, x̄) + Z(

¯
x,

¯
x)] + [1 + 2δ] · Z(x̄,

¯
x),

u1(µ) + u6(µ) = 2 · [z(x̄, x̄) + z(
¯
x,

¯
x)] = Z(x̄, x̄) + Z(

¯
x,

¯
x).

The condition for deviating to µ̂ not being pairwise profitable is u1(µ)+u6(µ) > u1(µ̂)+u6(µ̂);

this is sufficient for pairwise stability due to payoff symmetry in µ and no transfers.

We now turn to deriving condition for when segregating is inefficient. The aggregate benefits

over all agents of the two networks µ and µ̃ is expressed below in the two equations.

U(µ̃) = (2 + δ) · [Z(x̄, x̄) + Z(
¯
x,

¯
x)] + [2 + 7δ] · Z(x̄,

¯
x),

U(µ) = 3 · [Z(x̄, x̄) + Z(
¯
x,

¯
x)].

Sorting is inefficient when: U(µ) < U(µ̃). The two inequalities governing pairwise stability

and inefficiency has the following positive solution:

¯
δ(Ẑ) = Ẑ

Ẑ+
5
2

,

δ̄(Ẑ) = Ẑ
Ẑ+1

,
Ẑ =

Z(x̄,x̄)+Z(
¯
x,

¯
x)

2Z(x̄,
¯
x) − 1,

where
¯
δ and δ̄ are thresholds for respectively when network µ becomes inefficient and unstable

when δ increases.

The example above demonstrates that sorting can be inefficient when there are network effects

despite there being complementarity in type, i.e. supermodular link values. The inefficiency stems

from a novel source - the pairwise formation of links. The intuition is that under pairwise deviation

the two agents do not internalize the total value created for other agents number of indirect links

between a high and a low agent. Note that the above example has a close correspondence to

Propositions 1, 6 from de Mart́ı and Zenou (2017) as their results also holds only for cliques with

less than five of each type.13

We proceed with a generalization of the example above which holds for various structures of

the subnetworks within types and for multiple types. As we proceed with our generalization we

introduce two new concepts to convey the results.

Let the subset of agents who link in µ be denoted N(µ) = {i ∈ N : ∃j s.t.ij ∈ µ}. A

component, µ̃ of network µ is a subnetwork (i.e. µ̃ ⊆ µ) where for any agent i ∈ N(µ̃) it holds

that: agent i is connected in µ̃ to all other agents j ∈ N(µ̃), and; for all j ∈ N if ij ∈ µ then

13See the literature review for a thorough discussion of similarities and differences.
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ij ∈ µ̃. A perfectly sorted network is locally connected if there is one component for each type;

the set of networks which are perfect sorted and locally connected is denoted Mp−srt:conn.

Our next result is to extend the above example to a less restrictive setting. The extension

holds for a class of sorted networks fulfilling certain conditions, see below.

Definition 5. Let M̂ be a set networks where links are only between same-type agents, all agents

use the full quota of available links and all agents of same type are connected, i.e.

M̂ = Mp−srt:conn ∩Mno−surpl.

Theorem 1. Suppose there is supermodularity, hyperbolic decay, more than one partner is allowed

and type self-sufficiency then:

(i) any network in M̂ is pairwise stable when δ ≤ δ̄, i.e. M̂ ⊆Mp−stb
δ≤δ̄ ;

(ii) any network in M̂ is inefficient when δ >
¯
δ, i.e. (M̂ ∩MmaxU

δ>
¯
δ ) = ∅;

(iii) the set of networks M̂ is non-empty when the count of agents of each type has even number

greater than the degree quota, i.e. M̂ 6= ∅ if for all x ∈ X : (κ · nx) ∈ 2N;

where threshold
¯
δ, δ̄ are bounded as follows:

¯
δ ≤ min

x,x̃∈X

(
Ẑx,x̃

Ẑx,x̃+ 1
2
nxnx̃

)
, Ẑx,x̃ = Z(x,x)+Z(x̃,x̃)

2Z(x,x̃) − 1

δ̄ = min
x,x̃∈X

(
Ẑx,x̃

Ẑx,x̃+max(nx,nx̃)−|nx−nx̃|·ẑx,x̃

)
, ẑx,x̃ =

z(x, x̃)

Z(x, x̃)
.

The theorem above is applicable to numerous settings where social networks are formed. If for

example schools or firms pre-sort individuals according to talent or otherwise this may lead to a

sorted network which is stable but suboptimal. A specific example could be a school where sorting

by academic performance type is common in many countries and is often known as tracking. In

such cases the sorting induced by the institution could lead to a stable network with no linking

across despite links across having potential to raise welfare.

Note that the existence property in theorem (iii) requires either even link quota or even

number of agents for each type. The reason is technical and is that if both of these are not met

then the total demand for links of the same type is an uneven when there is no link surplus but

each links takes up a capacity of two and thus must be an even number; the implication is that

perfect sorting and no link surplus is incompatible when this even number condition is not met.

We discuss the choice of equilibrium concept in the discussion found in Section 5.

An alternative version of the above theorem under constant decay can be found in Appendix

B in Theorem 3. For both Theorems 1 and 3 one can view the conditions for stability of sorting

as generalizing not only Example 1 but also Propositions 1.ii and 4.iii from de Mart́ı and Zenou

(2017). These special cases of sorting correspond to a situation with two types and all agents of

12



a given type link with one another, i.e. when nx̄ = n
¯
x = κ + 1 and |X| = 2. The other part

of the two theorems is on inefficiency of sorting and generalizes Example 1 and Proposition 6

from de Mart́ı and Zenou (2017). It advances their proposition by removing the restriction to

two types and linking between all same type agents as well as doing away with the limitation of

having very few agents.14

Two types

When there are only two types of agents then we can strengthen our results further by establishing

that sorting is the unique pairwise stable outcome for moderate levels of externalities. In addition

we can show that the threshold for inefficiency now governs which network whether M̂ or another

class of networks with linking across types. This other class of networks that are described by

having the minimum necessary links to connected the two different types of agents:

Definition 6. Let there be two types. The set of cross-type bridged networks consist of a perfect

sorted network µs where two links across types are added:

M bridge = {µ ∈M | ∃µ̂ ∈ M̂ : µ = m̂ ∪ {ij, i′j′}, xi = xi′ , xj = xj′ , xi = xj}

Define the subset of cross-type bridged networks where each subnetwork of type is connected and

without linking surplus:

M̄ = {µ ∈M bridge | ∀x ∈ X : |µx| =
nxκ

2
− 1 and max

i 6=j
pij(µ) <∞}, µx = {ij ∈ µ|xi = xj}

It is important to understand that in our setup a cross-type bridged network requires two

links to be established across types. This is a technical condition stemming from the fact that

reducing the number of links among same type by one frees up the capacity to establish a link

by two agents; as a consequence it is possible for two links across types to be established. Using

both of these possible links is important for establishing efficiency. It will turn out to also be

important in the investigation of policy, see in Proposition 3. This stems from the fact that

when compensating one agent to establish a link across types the agent to which it has deleted a

link has an incentive to form a new link which will potentially destabilize subnetwork within the

subnetwork of their type. We discuss this assumption and how it relates to our choice of model

in Section 5.

Theorem 2. Suppose conditions for Theorem 1 are satisfied and suppose that |X| = 2,

(i) if δ < δ̄ then a network is in M̂ iff. it is pairwise stable, i.e. M̂ = Mp−stb
δ<δ̄

;

(ii) if δ <
¯
δ then a network is in M̂ iff. it is efficient, i.e. M̂ = MmaxU

δ>
¯
δ .

14As noted in the literature review if there is an equal number of agents for each type then Proposition 6 in
de Mart́ı and Zenou (2017) is valid only for at most five agents of each type (i.e. a total of ten).
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(iii) if δ >
¯
δ then a network is in M̄ iff. it is efficient, i.e. M̄ = MmaxU

δ>
¯
δ .

where the threshold for efficiency,
¯
δ =

Ẑ
¯
x,x̄

Ẑ
¯
x,x̄+ 1

2
n

¯
xnx̄

.

A visualization of the computed thresholds of externalities when there are two types is found

in Figure 2. The thresholds are computed for varying population size and varying strength of com-

plementarity. The upper part of the figure keeps the population size fixed while lower ones keep

the complementarity strength fixed. From inspection it is evident that the connection thresholds

both approximately follow power-laws in the number of agents and strength of complementarity.

The remainder of this subsection will sketch a policy intervention that can mitigate the prob-

lem of suboptimal sorting by improving welfare through encouraging connection. These interven-

tions can be seen more generally as a design problem where the policy maker intervenes to induce

a network that produces higher welfare. The tool that the policy maker employs is providing

incentives to agents for forming specific links. Define a link-contingent contract as a non-negative

transfer Cij to i for linking with another agent j. Denote the vector of link-contingent contract

as C.

Definition 7. Let a network µ̃ be implementable from µ, τ given C if there exist a sequence of

tuples (µ0, τ0), .., (µl, τl) where µ0 = µ, µl = µ̃ and τl = τ such that: for q = 1, .., l from µq−1

to µq is a feasible pairwise move which increases the pair’s net-utility most given C, and; µ̃ is

pairwise stable given τq and C.
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Figure 2: Thresholds for connecting. Visualization of thresholds for connecting from Theorem 1.
The upper part varying sizes of populations and fixed strength of complementarity. The lower
part has has varying strength of complementarity and fixed populations size. It is assumed there
are two types with an equal number of agents.
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Proposition 3. Suppose that conditions for suboptimal sorting from Theorem 1 are valid and

there are two types then a policy maker can implement an efficient network from M̄ when δ ∈ (
¯
δ, δ̄)

from a network in M̂ .

Note that the individual compensation for paid to agents for connecting to others may not be

equal. In particular the pay may also depend on the types. This is the case when there is both

supermodularity and monotonicity in Z then agents may receive compensation increasing their

type. This would be the case in a sorted suboptimal network with no transfers where components

have same number of agents and are isomorphic to another.

4.2 Externalities - infinite population

We finalize this section by investigating what pattern of linking is exhibited when the count of

agents becomes asymptotic infinite. In this large matching market we examine asymptotic perfect

sorting, i.e. when measured share of links to same type agents converges to one. Note that we use

a stronger equilibrium concept, strong stability, which allows for coordination between coalitions

of any size to coordinate.

Definition 8. Let asymptotic perfect sorting hold for a sequence of networks sets M̃n if for

any network µ ∈ M̃n where n→∞ it holds that |{ij ∈ µ : xi = xj}|/|µ| ' 1.

Define asymptotic independence as δ < (κ − 1)−1. For large matching markets the sufficient

conditions for asymptotic perfect sorting to emerge in strongly stable networks are:

Proposition 4. If there is supermodularity, a degree quota and constant decay with asymptotic

independence then there is asymptotic perfect sorting for strongly stable networks.

The result above demonstrates that the availability of many agents for linking induces perfect

sorting in strongly stable networks. It demonstrates the same prediction as the conclusion of

Becker (1973) for the marriage market model but holds in the presence of externalities with

constant decay.

For derivation of the result we use that an implication of strong stability is that efficiency

must hold. Therefore by establishing that efficiency requires perfect sorting it follows that it most

hold for any strongly stable network. Although efficiency is a unique property for strong stability

(and does not hold for weaker concepts) it can be argued that strong stability should be seen as

a refinement with desirable properties which makes it more likely when it exists.15

We conclude this section by noting that we may interpret the result on sorting in infinite

population differently; there is no loss of sorting when there are many agents.

15In some circumstances the existence of contracts where an agent may subsidize or penalize another agent’s link
formation with alternative agents may imply that strong stability even if contracts were limited to being pairwise
specified, cf. Bloch and Jackson (2007).
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5 Concluding discussion

We have extended the assortative matching framework to a setting of networks. We have show

that in general Becker (1973) condition for sorting are still essential for stability but that they

are insufficient for efficiency (when there is a finite population). We have sketched a policy that

can help overcome this issue.

We have chosen to model cost implicitly via a degree quota in order to have comparability

with the matching literature. We expect, however, that our results should easily translate to the

standard connections model of Jackson and Wolinsky (1996). In this other setup we expect that

the intuition should transfer when limiting the number sub-networks within types to be either

cliques or stars, as in de Mart́ı and Zenou (2017). One advantage of translating the setup to a

linear cost framework of the standard networks literature would be that the technical assumption

of either even degree or an even number of agents for each type would not be necessary. Under

hyperbolic decay one would also get a more natural efficient policy solution requiring only a single

agent of each type to bridge the bridge their respective subnetworks.

Our analysis is based on strict assumptions which we now review. We avoid discussing sorting

under search as there is a large literature e.g. Shimer and Smith (2000). One severe caveat

with our analysis, and stable networks in general, is that these networks may not exist. The

classic example is the room-mate problem, cf. Gale and Shapley (1962). Furthermore, the

gross substitutes conditions from Kelso and Crawford (1982) which ensures existence of stable

matchings in related settings are not satisfied in our setting with externalities.16 Nevertheless, by

changing equilibrium concept we expect to that some of the lack of existence could be solved. One

approach is using farsighted stability as in Chwe (1994); Dutta et al. (2005). Another approach

is using some approximative equilibrium concept e.g. cost of stability (the necessary payments

to induce stability) from Bachrach et al. (2009).

There are also a number of restrictive assumptions on payoff. The most crucial assumptions

are payoff separability and fixed structure of externalities. However, the results should be robust,

for instance to introduction of utility from triads etc. which is common in the economic literature

on networks. Another critical assumptions is supermodularity along with perfect transferability.

Nevertheless, as mentioned in the introduction, these two assumptions can be replaced by mono-

tonicity in individual link value and perfect non-transferability, which is also in line with some

research on peer effects.17
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A Proofs

Lemma 1. In the absence of network externalities then the set of strongly stable networks is

equivalent to the set of pairwise stable networks, i.e., Mp−stb
δ=0 = M s−stb

δ=0 .

Proof. By definition it holds that M s−stb
δ=0 ⊆Mp−stb

δ=0 , thus we need to show that Mp−stb
δ=0 ⊆M s−stb

δ=0

to prove the claim. This claim is shown using similar to arguments to Klaus and Walzl (2009)’s

Theorem 3.i.

Let µ with associated contracts τ be a network which is blocked by a coalition. It will be

shown that for every coalition t ∈ T that blocks, within the coalition there is a subset of no

more than two members that also wishes to block the network. Let µ̃ be the alternative network

that the blocking coalitions implements through a feasible coalition move and τ be the transfers

associated with µ̃.

It is always possible to partition the set of deleted links µ\µ̃ into two: (i) a subset denoted

µ̂ where for each link ij that can be deleted where one of the two partners can benefit, i.e. it

holds that either zij + τij − [ci(µ)− ci(µ\ij)] < 0 or zji + τji− [cj(µ)− ci(µ\ij)] < 0; (ii) a subset

denoted µ̆ where for each link ij neither of the previous two inequalities are satisfied.

Suppose that the first partition is non-empty, i.e. µ̂ 6= ∅. However, as deleting links can be

done by a single agent on its own then the move only takes needs the coalition of that agent

to delete the link. Thus any part of a coalitional move that only involves profitably removing

links can be performed in parts by a coalition with a single agent - therefore this move is also a

pairwise block.

Thus it remains to be shown that the remaining part of coalitional move also can be performed

as a pairwise block, i.e. when forming µ̃\µ and deleting µ̆. This part of the coalitional move must

entail forming links as no links can be deleted profitably. The set of formed links µ̃\µ can be
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partitioned into a number of |µ̃\µ| feasible submoves of adding a single link while deleting links

by each of the agents i and j who form a link. The feasibility for each of the partitioned moves is

always true when there is a cost function as moves are unrestricted. It is now argued that each of

the partitioned moves are feasible when there is a degree quota. If the network µ ∪ ij is feasible

then the move of simply adding the link is feasible. If µ ∪ ij is not feasible, then agents i and j

can delete at most one link each and if both µ and µ̃ are feasible then this also feasible as the

degree quota is kept.

For the coalitional move to µ̃ it must be that at least at least one link among the implemented

links µ̃\µ has a strictly positive value that exceeds the loss from deleting at most one link for each

of two agents forming the link. This follows as it is known that deleting one or more links cannot

add any value and thus must have weakly negative value and that by definition the total value

to the blocking coalition must be positive. As every one of the partitioned moves is feasible, it

follows that for every coalitional move there are two agents who can form link while potentially

destroying current links and both be better off. In other words, for every coalition that blocks,

there is a pairwise coalition that blocks.

Proof of Proposition 1. Suppose the claim is false. Let q be the lowest index for which

the condition fail: for all l < q it holds that X (νi(µ)/{j})l ≥ X (νj(µ)/{i})l+l∗ where l∗ =

max(kj(µ)− ki(µ), 0). Thus there are two agents i′, j′ such that:

xj′ = X (νj(µ))q, j′ ∈ (νj(µ)\(νi(µ) ∪ {i})),
xi′ < X (νj(µ))q, i′ ∈ (νi(µ)\(νj(µ) ∪ {j})).

Recall k∗ = min(ki(µ), kj(µ)). The argument why there must exist an agent i′ in νj(µ) but

not in (νj(µ) ∪ {j}) is that |{ι ∈ νi(µ) : xι < xj′}| > |{ι ∈ νj(µ) : xι < xj′}|. This follows as by

construction it holds that |{ι ∈ νi(µ) : xι < xj′}| = k∗−q+1 and |{ι ∈ νj(µ) : xι < xj′}| ≤ k∗−q.
The agents are such that xi > xj , xi′ < xj′ as well as ij′, ji′ /∈ µ. However, this fact implies

that there is a violation of strong stability: agents i, i′, j, j′ can deviate by destroying {ij, i′j′}
and forming {ij′, i′j} and thus increase payoffs due to supermodularity (cf. Equation 2). From

Lemma 1 it follows that pairwise stability is also violated if strong stability is violated. �

Proof of Proposition 2: Condition (i) follows from the fact that it is possible for every agent

to be linked with one another. Moreover every link adds value. Thus as a consequence every link

can be formed and will add value both for the pair forming and it at the aggregate level; thus

the unique pairwise and efficient outcome must be the complete network.

We move on to proving condition (ii). Suppose µ is a network where every agent has nx̄ − 1

same-type links and κ− nx̄ + 1 cross-type links.

Efficiency of µ follows from three facts. Firstly, µ the maximum distance of 2 between any

two agents as all same-type links are active and all agents have at least one cross-type link; thus

the potential benefits from indirect connections are maximized (both for constant and hyperbolic
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decay). Secondly, the number of same type links are maximized for all agents and this will

maximize the benefits from direct links; thus there must exactly nx̄ − 1 same type links. Finally,

there can be no link surplus because violation there exist a network where every agent has nx̄−1

same-type links and κ − nx̄ + 1 cross-type links and thus has no link surplus; this must have

strictly higher aggregate utility as every direct link increases utility.

Stability of µ follows from reviewing the feasible deviations. Let there be no transfers between

any agents. Firstly, deleting one or more links is profitable as it lowers the agents own welfare.

Secondly, forming a link requires deletion of one or more links by both agents. Deleting more links

than one will lower the utility this only the deviations with deletion of a single link are relevant

to consider - this corresponds to substitution of a link. Substituting either a same type link for

another same type link or a cross type link for another cross type provides no change of utility

to the pair of agents deviating. Substituting a cross type link for a same type link is not feasible.

Substituting a same type link for a cross type link will lower the utility as the indirect benefits

are unchanged but the direct benefits must be lower on aggregate due to supermodularity. �

Lemma 2. For every κ, n such that n > κ and n ·κ is even there exists a network µn,κ where all

agents have exactly κ neighbors. Moreover, if κ ≥ 2 then µn,κ is connected.

Proof. Suppose n is even. Let % be the modulus operator. We can construct the following

networks.

µ̂n,κ =
{
ij : i ∈ {1, ..., n2 }, j ∈ {(

n
2 + i% n

2 ), ..., (n2 + [i+ κ− 1] % n
2 })
}
, κ ≤ n

2 ,

µ̃n,κ =

µ̂n,κ, κ ≤ n
2 ,

µc\µ̂n,n−κ−1, κ > n
2 .

Letting µn,κ = µ̃n,κ is sufficient for n is even. When n is odd we know that κ is even and thus

we can use the following amended procedure instead:

ιn,κ(ι) =

n−1
2 + ι, κ ≤ n−1

2

n−1
2 + (ι+ κ) % n−1

2 , κ > n−1
2

µn,κ = µ̃n−1,κ\
{
ij : i ∈ {1, .., κ2}, j = ιn,κ(i)

}
∪ {ij : i = n, j ∈ (∪ι{1,.., κ2 }

{ι, ιn,κ(ι)})}

We now show that if κ ≥ 2 it follows that µ̃n,κ is connected. Assume that n is even and suppose

κ ≤ n
2 ; for any i ∈ N : i < n

2 where i′ = i+ 1 and let j = n
2 + i+ 1 where ij, i′j ∈ µ̃n,κ; thus for

all i, i′ ∈ {1, .., n2 } it holds that pii′(µ̃n,κ) < ∞. In addition, as for any i ∈ N : i ≤ n
2 , j = n

2 + i

it holds that ij ∈ µ̃n,κ it follows that µ̃n,κ is connected. If instead κ > n
2 then by construction

ii′ ∈ µ̃n,κ if either max(i, i′) ≤ n
2 or min(i, i′) > n

2 as ii′ /∈ µ̂n,n−κ−1. Moreover, for i ∈ N : i < n
2

and j = n
2 + (i + κ) % n

2 it holds that ij /∈ µ̂n,n−κ−1; thus ij ∈ µ̃n,κ. Therefore µ̃n,κ must be

connected.
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Assume instead that n is odd. By the above argument there are at least two connected

subnetworks consisting of agents in ∪ι{1,.., κ2 }
{ι, ιn,κ(ι)} and agents who are connected through

agent, n, i.e. N\(∪ι{1,.., κ2 }
{ι, ιn,κ(ι)}). If κ ≤ n−1

2 where i = κ
2 , i′ = κ

2 + 1 and j = n−1
2 + κ

2 + 1

then ij, i′j ∈ µ̃n,κ and thus µ̃n,κ is connected. If κ > n−1
2 where i = κ

2 , i′ = κ
2 + 1 and

j = n−1
2 + (ι+ κ+ 1) % n−1

2 then ij, i′j ∈ µ̃n,κ and thus µ̃n,κ is connected.

Lemma 3. Suppose that minx∈X nx > κ, κ ≥ 2. If ∃i ∈ N such that:

a) |{i′ ∈ νi(µ) : xi′ = xi}| ≤ nx − 2;

b) mini′∈Nx\νi(µ) ki′(µ) = κ, and;

c) maxi′∈Nx\νi(µ) |{i′′ ∈ νi′(µ) : xi′′ 6= x}| = 0;

then ∃i′, i′′ ∈ µ such that i′, i′′ /∈ νi(µ) and pi′i′′(µ\{i′i′′}) <∞

Proof. Suppose that for i ∈ N the conditions a)-c) are met but the lemma is not true. If i′ ∈ Nx

and ii′ /∈ µ then there must exist some i′′ ∈ Nx such that i′i′′ ∈ µ and i′′ /∈ νi(µ) due to conditions

a)-c). If pi′i′′(µ\{i′i′′}) <∞ then the proof is terminated so we must assume pi′i′′(µ\{i′i′′}) =∞.

As pi′i′′(µ\{i′i′′}) = ∞ then the network µ\{i′i′′} has two components, µ′, µ′′ ⊆ µ\({i′i′′},
where in each component µ′ or µ′′ there are at least κ + 1 agents of type x (as for any ι ∈
(νi′(µ) ∪ νi′′(µ)) it holds that xι = x).

Agent i can at most be connected to one of i′, i′′ in µ\({i′i′′}) as otherwise i′, i′′ would be

connected in µ\{i′i′′}. Denote the in subnetwork of {µ′, µ′′} where i is part of as µ̃ and define

Ñ = {ι ∈ Nx\νi(µ) : ∃ι′ ∈ N : ιι′ ∈ µ̃}.
Let ι0 ∈ arg maxι∈i′,i′′ pιi and iteratively ιl ∈ νιl−1

(µ), l ∈ N. Moreover, there must be a unique

path in µ\{i′i′′} between any two agents ι, ι′ ∈ Ñ as otherwise iι, iι′ /∈ µ but pιι′(µ̃\{i′i′′}) <∞;

by changing the labels we could denote i′ = ι and i′′ = ι′ and we would have shown the existence

of the desired pair of agents.

The fact here is a unique path between any two agents in Ñ entails that at level l or below

there are
∑l

q=0(κ − 1)q agents; thus nx ≥
∑l

q=0(κ − 1)q. Let l be the minimal q such that

∀ ∈ ι ∈ Ñ : piι ≤ q; as nx is finite such a q must exist. In addition, as there is a unique path

between agents in µ then any agent ι ∈ Ñ : pιι0 = l has only one link, and thus its degree is less

than κ (as κ ≥ 2). This violates the condition that all i′ ∈ N where xi′ = x has ki′ = κ.

Proof Theorem 1.i. We begin with showing property (i). Suppose µ ∈Mp−srt:conn∩Mno−surpl.

- we will demonstrate there are thresholds on δ such that µ has pairwise stability. We’re only

interested in the minimal thresholds such that for all values of externalities below those then

stability holds. Thus it is sufficient to evaluate the deviations from the network where the net

gains are highest.

The losses from breaking a link ij ∈ µ can be shown to have bounded from below such that:

≥ δ · (1 − Z(x, x)). Suppose that nx = κ + 1, x ∈ X then {ij ∈ µ : xi = x, xi′ = x} is a clique

(i.e. any i, i′ of type x are linked). This entails that pii′(µ\{ii′}) = 2 and thus pii′(µ\{ii′}) <∞.

Suppose instead that nx > κ + 1, x ∈ X then by Lemma 3 there exists some i, i′, both of type
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x such that pii′(µ\{ii′}) < ∞. Thus when evaluating losses at the threshold we can assume

that when deleting some link ij that i, j are connected in µ\{ij}. Although the length of the

shortest paths may increase, there will still be an indirect connection and therefore no loss of

utility for anyone but the two agents who lose their link. Therefore we assume throughout that

when evaluating thresholds if ii′ is deleted in Mp−srt:conn ∩Mno−surpl. then only agents i, i′, who

must be of same type, will each lose (1− δ) · z(x, x) while no other agents of incur a loss.

Suppose two agents i, j of distinct types respectively x, x̃ deviate by forming a link and delete

a link each from µ. The total loss for i and j for deleting a link each is:

(1− δ) · [z(x, x) + z(x̃, x̃)] = (1− δ) · (Ẑx,x̃ + 1) · Z(x, x̃).

The benefits gained for agent i for establishing a link to j is [1 + (nx̃ − 1) · (1 − δ)] · z(x, x̃).

Thus the total benefits gained for i and j from pairwise deviation can be bounded as follows.

[1 + (nx − 1) · δ] · z(x, x̃) + [1 + (nx̃ − 1) · δ] · z(x̃, x),

= 〈1 + [max(nx, nx̃)− |nx − nx̃| · ẑx,x̃ − 1] · δ〉 · Z(x, x̃).

where ẑx,x̃ =
z(arg minx,x̃ nx, arg maxx,x̃ nx)

Z(x,x̃) .

We can derive the threshold for pairwise stability:

(1− δ) · (Ẑx,x̃ + 1) · Z(x, x̃) = 〈1 + [max(nx, nx̃)− |nx − nx̃| · ẑx,x̃ − 1] · δ〉 · Z(x, x̃),

(1− δ) · (Ẑx,x̃ + 1) = 〈1 + [max(nx, nx̃)− |nx − nx̃| · ẑx,x̃ − 1] · δ〉 ,

Ẑx,x̃ =
[
max(nx, nx̃)− |nx − nx̃| · ẑx,x̃ + Ẑx,x̃

]
· δ,

δ =
Ẑx,x̃

max(nx, nx̃)− |nx − nx̃| · ẑx,x̃ + Ẑx,x̃
. (6)

Thus we can establish a lower bound for δ̄ (i.e. the upper bound in δ for pairwise sta-

bility of µ) by taking the minimum of right-hand-side in Equation 6; thus it follows that:

δ̄ = minx,x̃∈X

(
Ẑx,x̃

max(nx,nx̃)−|nx−nx̃|·ẑx,x̃+Ẑx,x̃

)
. Thus we have established (i). �

Proof of Theorem 1.ii. We move on to establishing property (ii). Suppose µ ∈Mp−srt:conn ∩
Mno−surpl. for which µ is inefficient. We’re interested in showing there exist a threshold such

that for all values of externalities above this then inefficiency of sorting holds. Note as we only

compare against alternative networks that involve two types there may exist other networks which

provide higher aggregate utility than the sorted networks for values below this threshold.

We follow a similar procedure for establishing property (ii) by finding
¯
δ for when the aggregate

gains of establishing links across types is zero. We will evaluate the bridged network µ̃ = µ ∪
{ij, i′j′}\{ii′, jj′} where xi′ = xi and xj′ = xj . The total loss U(µ) − U(µ\{ii′, jj′}) is equal to

double that of i, j suffers, i.e. 2(1− δ) · Ẑx,x̃ · Z(x, x̃).
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The gains from connecting are two links of value Z(x, x̃) as well as nx · nx − 2 indirect

connections (between all agents of type x and x̃) of value Z(x, x̃) · δ. It follows that the total

gains in benefits are Z(x, x̃) · [2 + (nx · nx̃ − 2) · δ]. The threshold δ can be found from finding

when gains equal losses:

2(1− δ) · (Ẑx,x̃ + 1) · Z(x, x̃) = 2Z(x, x̃) + (nx · nx̃ − 2) · Z(x, x̃) · δ,

(1− δ) · (Ẑx,x̃ + 1) = 1 + (1
2nx · nx̃ − 1) · δ,

Ẑx,x̃

Ẑx,x̃ + 1
2nx · nx̃

= δ. (7)

It follows that the threshold
¯
δ (which is such that every δ above implies there exists an efficient

deviation from µ) must be at least the minimum of left-hand-side in Equation 7 over possible

types, i.e. it must hold that
¯
δ = minx,x̃∈X

(
Ẑx,x̃

Ẑx,x̃+ 1
2
nx·nx

)
. This terminates the proof for property

(ii) of the theorem.

Proof of Theorem 1.iii. Property (iii) follows as Lemma 2 can be applied to the subset of

agents associated with each type as ∀x ∈ X : nx > κ and κ · nx ∈ 2N. �

Proof of Theorem 2.i. We move on to property (iv.a) of the proof where we establish char-

acterization of pairwise stable networks when there is type self-sufficiency and moderate exter-

nalities. We need to show that M̂ = Mp−stb
δ≤δ̄ if |X| = 2. From property (ii) M̂ ⊆ Mp−stb

δ≤δ̄ thus it

remains to show: that Mp−stb
δ≤δ̄ ⊆ M̂ . As |X| = 2 it holds that X = {x, x}. Define Υ:

Υ = (1− δ) · [z(x̄, x̄) + z(
¯
x,

¯
x)]− [1 + (n

¯
x − 1) · δ] · z(

¯
x, x̄)− [1 + (nx̄ − 1) · δ] · z(x̄,

¯
x).

As δ <
¯
δ it follows from Equation 6 that:

Υ > 0. (8)

Suppose µ /∈ Mp−sort. Define a sequence of agent pairs, i0j0, i1j1, ... as follows. Let agents

i0, j0 ∈ N be such that xi 6= xj and ij ∈ µ; such i0, j0 must exist as µ /∈ Mp−sort. Without loss

of generality let xi0 = x and xj0 = x̃ where x, x̃ ∈ X, and assume that:

− τi0j0 > (1− δ) · z(x̃, x̃)− [1 + (nx̃ − 1) · δ] · z(x̃, x). (9)

The above inequality must hold for either type x or x̃ as we substitute labels for i, j as well

as x, x̃ due to Υ > 0.

Let l ∈ N. It is assumed that for any q < l : xiq = x, xjq = x̃. Also assume an associated set

collection of links, µl−1 ⊂ µ, and let the set be defined as µl−1 = ∪l−1
q=0{iqjq} such that for each

q < l: iqiq−1 /∈ µ if q is odd and jqjq−1 /∈ µ if q is even. At step q ∈ N let ιq = iq−1 if q is even

24



else denote ιq = jl−1. Also let ηq ∈ {iq−1, jq−1} : ηq 6= ιq. This entails that ι1 = i0 and η1 = j0.

Define xq = x, x̃q = x̃ if q is even else vice versa. Also let Nq = {ι ∈ N : xι = xq}.
Suppose that at every q ∈ N : q < l it holds that ι′q /∈ νιq(µ), xι′l = xl and let η′l ∈ νι′l(µ).

Finally also define at every q < l the move ∆µq = µ ∪ {ιqι′q}\{ιqηq, ι′qη′q} and let:

∆Uq = uιq(∆µq)− uιq(µ) + uι′q(∆µq)− uι′q(µ) (10)

∆Ûq = uiq(∆µq+1q:even)− uiq(µ) + ujq(∆µq+1q:odd)− ujq(µ) (11)

Note that ∆µq = {iqiq−1} ∪∆µ̃q if q is even and ∆µq = {jqjq−1} ∪∆µ̃q if q is even; ∆µ̃q =

µ ∪ \{iq−1jq−1, iqjq}. By inserting i, j for ι, η we yield the following expression:

l−1∑
q=l′

∆Uq =
l−2∑
q=l′

∆Ûq + uι′l−1
(∆µl−1)− uι′l−1

(µ) + uιl′ (∆µl′)− uιl′ (µ) (12)

Assume that for every q ∈ N where q < l:

|{ι ∈ N : xι = xq ∧ pιιq(µ) <∞ ∧ pιιq(µ ∪ {ιqι′q}\{ηqιq}) =∞}| = 0 (13)

|{ι ∈ N : xι = xq ∧ pιι′q(µ) <∞ ∧ pιι′q(∆µq) =∞}| = 0 (14)

Suppose Equation 13 is satisfied. It follows that net gains of benefits for ιq from deleting the

link with ηq while forming a link together with ι′q can be bounded: the upper bound on losses is

when a connection is lost to all agents of type x̃q: [1 + (nq − 1) · δ] · z(xq, xq); the lower bound on

gains is (1− δ) · z(xq, x̃q) as the distance between ιqι
′
q is shortened to 1.

uιq(µ ∪ {ιqι′q}\{ιqηq})− uιq(µ) ≥ (1− δ) · z(xq, xq)− [1 + (nq − 1) · δ] · z(xq, x̃q) (15)

Suppose Equations 13 and 14 hold - we can demonstrate that Equation 14 also where we

replace ι′q with ιq. If pιqι′q(µ) < ∞ then as it also holds that pιqι′q(∆µq) < ∞ it follows that

pι′qι′′q (µ) <∞ and pι′qι′′q (∆µq) =∞ which violates Equation 14. Thus it must be that pιqι′q(µ) =∞.

Suppose instead pιqι′q(µ) =∞. If ∃ι′′q ∈ N : pιqι′′q (µ ∪ {ιqι′q}\{ιqηq}) <∞ ∧ pιqι′′q (∆µq) =∞ then

it must be that pη′qι′′q (µ) <∞ and thus pι′qι′′q (µ) <∞ which implies that pιqι′′q (µ) =∞. However,

this is a violation of pιqι′′q (µ) <∞.

{ι ∈ N : xι = xq ∧ pιιq(µ) <∞ ∧ pιιq(∆µq) =∞}| = 0 (16)

Analogue to the derivation of Inequality 15 the net gains are bounded when Equations 13 and

14 are satisfied:

min
ι∈{ιq ,ι′q}

[uι(∆µq)− uι(µ)] ≥ (1− δ) · z(xq, xq)− [1 + (nq − 1) · δ] · z(xq, x̃q), (17)
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One implication of Inequalities 9 and 17 if l > 1:

uι1(∆µ1)− uι1(µ)− τι1η1 ≥ (1− δ) · z(x, x)− [1 + (nx − 1) · δ] · z(x, x̃)− τi0j0
uι1(∆µ1)− uι1(µ)− τι1η1 ≥ Υ (18)

Another implication of Inequality 17 is that:

uiq(∆µq+1odd(q))− uiq(µ) + ujq(∆µq+1even(q))− ujq(µ) ≥ Υ, ∀q ∈ [[1, l − 1]]

In order for ∆µq not to be a profitable pairwise deviation it must hold that:

uιq(µ) + uι′q(µ) + τι′qη′q + τιqηq ≥ uιq(∆µq) + uι′q(∆µq)

τι′qη′q ≥ ∆Uq + τηqιq

We can rewrite the above inequality using that ι′q−1 = ηq, η
′
q−1 = ιq and thus τι′q−1η

′
q−1

= τηqιq .

We also substitute in Equation 10 and assume the above inequality holds for any q < l:

τι′l−1η
′
l−1

≥ ∆Ul−1 + τι′l−2η
′
l−2

τι′l−1η
′
l−1

≥
l−1∑
q=l′

∆Uq + τι′
l′−1

η′
l′−1

(19)

As τηlιl = τι′l−1η
′
l−1

and −τιlηl = τηlιl it follows that using Equation 12:

−τιlηl ≥
l−1∑
q=l′

∆Uq + τι′
l′−1

η′
l′−1

=

l−2∑
q=1

∆Ûq + uι′l−1
(∆µl−1)− uι′l−1

(µ) + uι1(∆µ1)− uι1(µ) + τι′0η′0

=
l−2∑
q=1

∆Ûq + uηl(∆µl−1)− uηl(µ) + uι1(∆µ1)− uι1(µ)− τι1η1 (20)

Define the set of partners for ιl:

N̂∗l (ιl, µl−1) = {ι ∈ N\{ιl} : xι = xιl , pιιl(µ) <∞, pιιl(µ\{ιlηl}) =∞}

N̂∗∗l (ιl, µl−1) = {ι ∈ N\{ιl} : xι = xιl , ιιl /∈ µ}

N̂l(ιl, µl−1) =

N̂∗l (ιl, µl−1) if N̂∗l (ιl, µl−1) 6= ∅,

N∗∗l (ιl, µl−1) else.
(21)

A property of N̂l is that N̂l 6= ∅; this follows as minx̂∈X nx̂ ≥ κ+ 1. Let ι′l ∈ N̂l which implies

that Equation 13 holds.
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Suppose that kι′l(µ) < κ. As Equation 13 holds it follows that

uι′q(µ ∪ {ιqι
′
q}\{ιqηq})− uι′q(µ) ≥ (1− δ) · z(xq, xq),

and thus uι′q(µ ∪ {ιqι
′
q}\{ιqηq}) > 0.

We can also derive utility bounds using Inequality 20 along with Inequalities 8, 18:

uιl(µ ∪ {ιlι
′
l}\{ιlηl})− uιl(µ)− τιlηl ,

≥ uιl(µ ∪ {ιlι
′
l}\{ιlηl})− uιl(µ) + uηl(∆µl−1)− uηl(µ) +

l−2∑
q=1

∆Ûq + uι1(∆µ1)− uι1(µ)− τι1η1 ,

≥ l ·Υ,

> 0,

thus ιl, ι
′
l can profitably from deviate pairwise. Thus it must be that kι′l(µ) = κ.

Suppose there exists ι′l ∈ Nl\νi(µ), ι′′l ∈ Nl\{ιl, ι′l} such that ι′lι
′′
l ∈ µ, pι′lι

′′
l
(µ\{ι′lι′′l }) < ∞

and τι′lι
′′
l
≤ 0. This entails that uι′l(∆µ̂l) − uι′l(µ) ≥ 0 where ∆µl = µ ∪ {ιlι′l}\{ιlηl, ι′lι′′l }.

This follows from uι′l(∆µl) − uι′l(µ) = uι′l(∆µl) − uι′l(µ ∩ ∆µl) − [uι′l(µ ∩ ∆µl) − uι′l(µ)] and

uι′l(∆µl) − uι′l(µ ∩ ∆µl) ≥ 1 − z(x, x) and uι′l(µ ∩ ∆µl) − uι′l(µ) = 1 − z(x, x). As τι′lι
′′
l
≤ 0 it

follows that that utility for ι′l is:

uι′l(∆µ̂l)− uι′l(µ)− τι′lι′′l ≥ 0.

And utility for ιl can bounded be as follows using Inequality 15 for uιl(∆µ̂l) − uιl(µ) as

Equation 13 holds :

uιl(∆µ̂l)− uιl(µ)− τιlηl
= uιl(∆µ̂l)− uιl(µ) + τηlιl

≥
l−1∑
q=1

∆Uq + uιl(∆µ̂l)− uιl(µ) + τj0i0

=

l−2∑
q=1

∆Ûq + uιl(∆µ̂l)− uιl(µ) + uηl(∆µl−1)− uηl(µ) + ui0(∆µ1)− ui0(µ)− τi0j0

≥ l ·Υ

> 0 (22)

The above inequalities entails that ιl, ι
′
l can deviate profitably pairwise; this is a violation

of pairwise stability and thus cannot be true. Thus there exists no ι′lι
′′
l ∈ µ such that ι′l ∈

Nl\νi(µ), ι′′l ∈ Nl\{ιl, ι′l} as well as pι′lι
′′
l
(µ\{ι′lι′′l }) <∞ and τι′lι

′′
l
≤ 0.

Suppose that ∀ι′l ∈ Nl : @η′l ∈ νι′l(µ\µl−1) : xη′l 6= xl. This entails that ∀ι′l ∈ Nl : @η′l ∈
νι′l(µ) : xη′l 6= xl as kι′l(µ\µl−1) = kι′l(µ). By Lemma 3 it follows there exists ι′l, ι

′′
l ∈ Nl\νi(µ) such
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that pι′lι
′′
l
(µ\{ι′lι′′l }) < ∞, ι′lι

′′
l ∈ µ and τι′lι

′′
l
≤ 0 which by the arguments above cannot be true.

Therefore there has to exist some ι′l ∈ Nl for which there is an agent η′l ∈ νι′l(µ\µl−1) where it

holds that xη′l 6= xl.

A duplicate occurs if il−1, jl−1 ∈ µl−2. That is for some l′ < l it holds that either ιl, ηl = ιl′ , ηl′

if l − l′ is even or ιl, ηl = ηl′ , ιl′ if l − l′ is odd.

If l − l′ is odd, then τι′
l′−1

η′
l′−1

= −τι′l−1η
′
l−1

and therefore we can reduce the Inequality 19:

0 ≥
l−1∑
q=l′

[uιq(∆µq)− uιq(µ) + uι′q(∆µq)− uι′q(µ)] + 2τι′
l′−1

η′
l′−1

=

l−2∑
q=l′

∆Ûq + uι′l−1
(∆µl−1)− uι′l−1

(µ) + uιl′ (∆µl′)− uιl′ (µ) + 2τι′
l′−1

η′
l′−1

=

l−2∑
q=l′

∆Ûq + 2 ·
〈
uη′

l′−1
(∆µl′)− uη′

l′−1
(µ) + τι′

l′−1
η′
l′−1

〉

=

l−2∑
q=l′

∆Ûq + 2 ·

〈
uη′

l′−1
(∆µl′)− uη′

l′−1
(µ) +

l′−1∑
q=1

∆Uq + τι′0η′0

〉

=

l−2∑
q=l′

∆Ûq + 2 ·
l′−1∑
q=1

∆Ûq + 2 · [uι1(∆µ1)− uι1(µ)− τι1η1 ]

≥ (l + l′) ·Υ

> 0,

thus there must be a feasible pairwise deviation for ιq, ι
′
q where q ∈ [[1, l − 1]].

If l− l′ is even then τι′l−1η
′
l−1

= τι′
l′−1

ηl′−1
; thus Inequality 19 for no pairwise deviation becomes:

0 ≥
∑l−1

q=l′ ∆Uq. This can in turn be rewritten as follows:

0 ≥
l−2∑
q=l′

∆Ûq + uι′l−1
(∆µl−1)− uι′l−1

(µ) + uιl′ (∆µl′)− uιl′ (µ)

Using that ιq = η′q−1 and η′l′−1 = η′l−1 we get: 0 ≥
∑l−1

q=l′ ∆Ûq. Recall that for all q ∈ N : q < l

it holds that ∆Ûq ≥ Υ where Υ > 0. Thus there must be a feasible pairwise deviation.

Due to ι′l, η
′
l = ηl+1, ιl+1 it follows that it cannot be that ι′lη

′
l ∈ µl−1 as otherwise iljl ∈ µl−1.

This entails @ι′l ∈ Nl : ∃η′l ∈ νι′l(µl−1). Therefore we can assume ∀ι′l ∈ Nl : @η′l ∈ νι′l(µl−1) and

thus ∀ι′l ∈ Nl : kι′l(µ\µl−1) = kι′l(µ).

Suppose that Equation 14 is violated for any ι′l ∈ N̂l. This is equivalent to it holds for any

ι′l ∈ N̂l where η′l ∈ νι′(µ) that there is some other ι′′l ∈ N̂l such that pι′lι
′′
l
(∆µl) =∞. Let ι

(1)
l = ι′l.

As Equation 14 must hold for any ι′l ∈ N̂l we can reproduce the argument iteratively and thus

for ι
(q)
l ∈ N̂l, q ∈ N there is some η

(q)
l ∈ ν

ι
(q)
l

(µ) such that for some ι
(q+1)
l ∈ N̂l\{ι

(1)
l , .., ι

(q)
l } it
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holds that p
ι
(1)
l ι

(q+1)
l

(∆µl) = ∞. However, as n < ∞ it follows that there for some q ∈ N that

Nl\{ι
(1)
l , .., ι

(q)
l } = ∅. Thus let instead ι′l = ι

(q)
l ; for any η′l ∈ νι′l(µ) there is no ι′′l ∈ Nl such that

pι′lι
′′
l
(µ) =∞. This contradicts that Equation 14 is violated for agent ι′l = ι

(q)
l .

Suppose µ /∈ Mno−surpl.. This would entail that ∃i ∈ N : ki(µ) < κ. As nx > κ it must be

that ∃i′ ∈ N : xi′ = xi, ii
′ /∈ µ. Suppose that ki′ < κ then

∑
ι∈{i,i′}[uι(µ ∪ {ii′}) − uι(µ)] > 0

and thus ii′ can be formed profitably pairwise. Moreover, as ki′(µ) = κ it follows that ∃i′′ ∈ νi′ :

ii′′ /∈ µ, xi′′ = xi. By Lemma 3 it follows there exists ι, ι′ ∈ Ñ\νi(µ) such that pιι′(µ\{ιι′}) <∞,

ιι′ ∈ µ and τιι′ ≤ 0. This entails that uι(µ) − uι(µ\{ιι′}) + τιι′ ≤ (1 − δ)z(x, x). Moreover, as∑
j∈{i,ι}[uj(µ ∪ {iι}\{ιι′})− uj(µ\{ιι′})] ≥ (1− δ) · Z(x, x) it holds that:

∑
j∈{i,ι}

[uj(µ ∪ {iι}\{ιι′})− uj(µ)]− τιι′ ≥ (1− δ) · z(x, x)

.

Thus i, ι can deviate profitably pairwise which contradicts pairwise Nash stability. Therefore

it must be that µ ∈Mno−surpl.

Suppose µ /∈Mp−sort+conn. As µ ∈Mp−sort ∩Mno−surpl. there exist i, i′, j, j′ ∈ N : xi = xi′ =

xj = xj′ and ij, i′j′ ∈ µ and pii′(µ) =∞. Without loss of generality we assume that τij , τi′j′ ≤ 0

(otherwise we could simply switch identities some i’s and j’s). This entails:

min
ι∈{i,i′}

[uι(µ\{ij, i′j′})− uι(µ)] + τij + τi′j′ ≤ 2(1− δ) · z(x, x)

Also we have that:

min
ι∈{i,i′}

[uι(µ ∪ {ii′}\{ij, i′j′})− uι(µ\{ij, i′j′})] ≥ (κ+ 1) · (1− δ) · z(x, x)

This entails that
∑

ι∈{i,i′}[uι(µ∪{ii′}\{ij, i′j′})−uι(µ)]− τij− τi′j′ ≥ κ · (1− δ) ·Z(x, x); thus

i, i′ can deviate profitably. Thus we have shown that Mp−stb
δ≤δ̄ ⊆ M̂ which terminates the proof of

property (iv). �

Proof of Theorem 2.ii and 2.iii In order to prove property (iv.b) and (iv.c) we begin by

noting that utility under hyperbolic decay (from Equation 3) can be expressed as:

wij(µ) = (1− δ)1=1(pij(µ)) + δ · 1∈[1,∞)(pij(µ)). (23)

Thus total utility from the network has the following form:

U(µ) =
∑
i∈N

∑
j∈N,j 6=i

[
(1− δ) · 1=1(pij(µ)) + δ · 1∈[1,∞)(pij(µ))

]
· z(xi, xj). (24)

The form for aggregate utility in Equation 24 has the advantage that it is easier to perform
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optimization on. From inspection we see that if a network is connected then indirect term in the

weights, δ ·1∈[1,∞)(pij(µ)), is one for all edges, and as a consequence the aggregate utility attains

its maximal value.

We begin with restricting ourselves to look at perfect sorted networks. If it holds that each

subnetwork µx ⊆ µ consisting of all links within a given type is connected then the argument made

above, that the aggregate utility from indirect links (i.e. stemming from δ · 1∈[1,∞)(pij(µx)) = 1

for xi = xj , i 6= j in Equation 24), is maximized (conditional on perfect sorting). Finally, it

must be that each subnetwork has no link surplus. This follows as there exists a subnetwork

µ̃x with no link surplus which is connected from Lemma 2. Thus a violation of link surplus

would imply inefficiency of µx as it would hold that the number of links between type x would be

lower than the possible, i.e.
∑

ij∈µ̃x 1=1(pij(µ̃x)) >
∑

ij∈µx 1=1(pij(µx)), and thus provide lower

welfare by Equation 24. As any network which consists of perfectly sorted subnetworks where

each subnetwork is connected and has no link surplus gains exactly the same utility we know

that M̂ constitutes the set of efficient networks among networks with perfect sorting. We know

from Theorem 1.iv that M̂ set is non-empty and by Theorem 1.ii it follows that M̂ are inefficient

when δ <
¯
δ.

We proceeed with restricting our search for efficient networks among those that do not have

perfect sorting. In the case where there is not perfect sorting we can follow the same procedure by

the same arguments that we used for the perfect sorting case. Again, if a network µ is connected

then the total utility from indirect links is maximized as δ · 1∈[1,∞)(pij(µ)) = 1 for every i 6= j.

The utility accruing from (direct) links stems from the term 1=1(pij(µ)) in Equation 24. Due to

supermodularity this utility from (direct) linking will be maximized if there is perfect sorting,

however, this is not feasible as we require some links across type.

The minimal required links across types are two. This follows as at least one link across types

is required and thus there the number of same type links must be at least one lower. With one

link less among same types for each type it follows that two links can be established across types

as each link less for type x means that
∑

xi=x
ki is two lower.

We also know that as long as µ is connected we maximize indirect benefits. To maximize

utility from direct links we must maximize the number of same type links. We have argued that

the highest attainable number of links within same type is nxκ
2 − 1 with two links across. It

follows that a network which is connected and has nxκ
2 − 1 of same type links for each type with

two links across must achieve the highest aggregate utility; the set of networks which fulfill this

property is in fact M̄ .

It remains to show that M̄ is non-empty; we can construct a cross-type bridged network µ̄

from another µ̂ ∈ M̂ such that µ̄ = µ̂ ∪ {ij, i′j′}\{ii′, jj′} where xi = xi′ , xj = xj′ , xi 6= xj

which by construction has the feature that µ̄ is connected (as the subnetworks for each type are

connected if we choose each subnetwork using Lemma 2) and there are exactly nxκ
2 − 1 links of

each type. Thus we have established that M̄ constitutes the set of efficient networks among the

networks that are not sorted.
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From Theorem 1.ii we know there exist a threshold
¯
δ such that if δ >

¯
δ then networks in

M̂ are inefficient. as such it must be that M̄ are efficient for δ >
¯
δ as they are efficient among

non-sorted networks. �

Proof Proposition 3. Let µ ∈ M̂ and δ ∈ (
¯
δ, δ̄). By construction there exists a network

µ̃ which has higher aggregate utility. Let the two pairs of agents ii′, jj′ be agents such that

µ̃ = µ ∪ {ij, i′j′}\{ii′, jj′} and xi = xi′ = x and xj = xj′ = x. Specify a link-contingent contract

to i, j where µ̂ = µ ∪ {ij}\{ii′, jj′} such that:

∀ιι′ ∈ {ij, i′j′} : Cιι′ + Cι′ι ∈ ( 1
2 [Z(x, x) + Z(x̃, x̃)− 2Z(x, x̃)], 1

2 [U(µ̃)− U(µ)]), (25)

∀ιι′ /∈ {ij, ji, i′j′, j′i′} : Cιι′ = 0. (26)

By Theorem 1 we know that µ is pairwise stable. Pairwise stability implies that 1
2 [Z(x, x) +

Z(x̃, x̃)− 2Z(x, x̃)] > bi(µ)− bi(µ̂) + bj(µ)− bj(µ̂) as deviation is not profitable. Using this fact

together with Inequality 25 it follows that:

Cij + Cji > bi(µ)− bi(µ̂) + bj(µ)− bj(µ̂).

The above inequality entails agents i, j are a blocking coalition that can gain by deviating to

µ̂; this blocking move is also the only profitable move for i, j due to pairwise stability of µ and

Equation 26.

In network µ̂ agents i′, j′ have an incentive to form a link with one another as both have surplus

link capacity (i.e. degree below the quota) and forming a link is profitable from Inequality 25.

Moreover, we show in the following that this move is the one that ensures the highest aggregate

net benefits to i′, j′.

We begin with showing that linking across types to other agents of type x, x̃ is not profitable.

Suppose i′ links across types to another agent j′′ ∈ {ι 6= j′ : xι = xj′}. First, note the pairwise

deviation from µ to form i′j′′ is unprofitable (due to pairwise stability), thus it less profitable than

forming i′j′ from µ (which is profitable by Inequality 25). Second, the net-increase in value of

the pairwise deviation to form i′j′ over i′j′′ increases from µ to µ̂ - this is true as j′ loses the link

with i from µ while j′′ has an unchanged number - thus j′ will have a weakly lower opportunity

cost of deleting links in µ̂. The same argument can be applied to j′ for i′′ ∈ {ι 6= i′ : xι = xi′}.
We turn to showing that linking to other agents of same type (staying sorted) is not more

profitable as well. Suppose i′ and j′ link to same types as themselves respectively, i.e. i′′ ∈ {ι 6=
i′ : xι = xi′} and j′′ ∈ {ι 6= j′ : xι = xj′}. Suppose ii′′ ∈ µ then no feasible pairwise moves to

same type can exist in µ̂ as the move can only involve deleting links; same is true if jj′′ ∈ µ. Thus

instead we use ii′′, jj′′ /∈ µ. It must be that any pairwise deviation forming either ii′′ or jj′′ from

µ is unprofitable (as µ is pairwise stable); this implies that for any ι ∈ νi′′(µ̂) and ι′ ∈ νj′′(µ̂) it
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holds that:

bi′(µ̂ ∪ {i′i′′}\{i′′ι})− bi′(µ̂) + bi′′(µ̂ ∪ {i′i′′}\{i′′ι})− bi′′(µ̂)− τi′′ι ≤ z(x, x), (27)

bj′(µ̂ ∪ {j′j′′}\{j′′ι′})− bj′(µ̂) + bj′′(µ̂ ∪ {j′j′′}\{j′′ι′})− bj′′(µ̂)− τj′′ι′ ≤ z(x̃, x̃). (28)

As bi′(µ̃)− bi′(µ̂) + bj′(µ̃)− bj′(µ̂) = z(x, x̃) + z(x̃, x) it follows that

bi′(µ̃)− bi′(µ̂) + bj′(µ̃)− bj′(µ̂) + Ci′j′ + Cj′i′ > z(x, x) + z(x̃, x̃).

The above inequality implies together with Inequalities 27 and 28 that the total gains for i′

and j′ exceeds the total value that could be generated from alternative deviations. Thus there

are two pairwise moves from µ to µ̂ and from µ̂ to µ̃ which both provide strictly higher utility to

the deviating agents.

Pairwise stability follows from three arguments. First, all deviations among agents where only

links in µ̃ ∩ µ are deleted will provide at most the same value in µ̃ that the deviations did in µ -

this follows as these agents all have the same links and in µ̃ all agents are connected in µ̃ and thus

only direct links matter. This upper limit too gains from deviations implies none of these moves

can be profitable as they were unprofitable form µ. Second, deviations that involve deletion of

links in µ̃\µ are shown above to provide strictly higher value than any other deviations - thus

deviating from µ̃ must also provide strictly lower value. �

Proof of Proposition 4. Under asymptotic independence it follows that average per agent

utility for type x under asymptotic perfect sorting converges to (using a geometric series):

(κ− 1) δ

1− (κ− 1) δ
z(x, x)

Let ωxx̃ = κ · E[δpij |xi = x, xj = x̃]. Suppose that for two types, x, x̃ there is not perfect

sorting, and in particular there is some mixing between them, i.e. ωxx̃ > 0; the average per agent

utility is: [
(κ− 1) δ

1− (κ− 1) δ
− ωx

]
· z(x, x) + ωx · z(x, x̃).

Each agent will almost surely have κ links as it is assumed that each link adds positive value

and there are asymptotic infinite agents (only a finite number can then not fulfill the degree

quota).

As we have a finite set of types we can assume then for large populations there is a subset of

types, X̂ ⊆ X, where for every type x ∈ X̂ it holds that there is an asymptotic strictly positive

share of the total number of agents of that type, i.e., limn→∞(|{i ∈ Nn}xi=x|/n) > 0. If there is

only one such type, i.e. |X̂| = 1, then asymptotic perfect sorting follows by assumption as the

asymptotic number of links is κ.
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For any two types x, x̃ ∈ X̂ which are mixing their average utility is:

(κ− 1) δ

1− (κ− 1) δ

[
nx · z(x, x) + nx̃ · z(x̃, x̃)

nx + nx̃

]
− 1

2
·
[
nx · ωxx̃
nx + nx̃

]
· [Z(x, x) + Z(x̃, x̃)− 2Z(x, x̃)].

As there is supermodularity it follows that Z(x, x) + Z(x̃, x̃)− 2Z(x, x̃) > 0 and thus mixing

must decrease utility. The same argument can be applied by mixing between multiple types. �

B Supplementary appendix: Externalities with finite poulation

and constant decay

This appendix shows how suboptimally sorted networks are also prevalent under constant decay.

It is split into two sub-appendices: sub-appendix B.1 which deals with demonstrating the results

and sub-appendix B.2 which only contains auxiliary results.

B.1 Suboptimal sorting in local trees

We show sorting may be pairwise stable but suboptimal under constant decay for a subclass of

networks. We begin by describing this subclass. Informally put, the relevant subclass of perfectly

sorted networks where each subnetwork for a given type has a certain structure. The structure

of each subnetwork is such that from the perspective of every agent (i.e. the ego-network) each

subnetwork appears as a tree when disregarding the links of the agents furthest away. Note

that a tree is network where every pair of agents are connected by a unique path. Thus these

subnetworks are called local trees as they are not trees in a global sense but only when disregarding

most distant agents.

The formal definition is as described below. The definition employs the network diameter

which is the maximum distance between any two agents, i.e. m(µ) = supi,j∈N pij(µ).

Definition 9. A network µ is a local tree when each agent i has κ links where:

• for each other agent j 6= i at distance pij(µ) ≤ mn,κ − 2 there are κ− 1 links between agent

j and j′ such that j′ is one step further away, i.e. pij(µ) = pij′(µ)− 1;

• the network diameter m(µ) = mn,κ,

mn,κ = arg min
m
{m : Σm

l=1(κ(κ− 1)l−1) + 1 ≥ n}. (29)

The structure of local trees entails that each agent has κ · (κ−1)p−1 agents at distance p < m,

where m = mn,κ. At distance p = m there are n−
∑m−1

l=1 κ ·(κ−1)l−1 (all remaining agents). This

structure implies that every agent’s utility is maximized subject to the constraint of all agents
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having at most κ links;18 a side effect is that utility before transfers is symmetric.

A necessary condition for local trees to exist is that there is no link surplus, i.e. degree quota

is binding (∀i ∈ N : ki = κ). Note this binding condition is only possible when n · κ is even.

When a local tree network fulfills n =
∑m

l=1 κ · (κ− 1)l−1 then it is an exact local tree. See the

next sub-appendix for an elaborate treatment of structure of exactly local trees. Two subclasses

of exact local trees which are worth mentioning. The first is a network known as a cycle or a ring.

The cycle is characterized by having a minimal possible degree quota (κ = 2) among local trees

and a maximal diameter (m =
⌈
n−1

2

⌉
). The second is a clique where all agents are linked, i.e.

the complete network. Cliques have maximal degree quotas (κ = n− 1) and minimal diameters

(m = 1). Both subclasses has a network which exists for any n. Note that in Example 1 each

of the two components is both a cycle and a clique. Note that there exist non-trivial networks

beyond the cycle and the clique.19

In order to derive our results it is necessary to restrict ourselves to a subset of local trees.

The subset are those local trees where the deletion of links leads to equal losses to both of agents

whose link is deleted; thus we refer to these local trees as having symmetric losses:

Definition 10. A local tree µ has symmetric losses when at every distance p = 1, ..,m it holds

that |{i ∈ N : pιi(µ\{ιι′}) = p}| = |{i ∈ N : pι′i(µ\{ιι′}) = p}|.

Denote the set of perfectly sorted networks where the subnetwork for each type is a local tree

with symmetric losses as Mp−srt:symm. loc−tree.

Whether or not symmetric losses is a generic property for all local trees is an open question.

However, in simulations that we perform it holds all network configurations which are local trees

up to size n = 10 have symmetric losses (see result below and proof for exhibition of examples).

Moreover for size up to n = 16 it has been shown to hold for any networks examined in the

simulation.

A generalization of stable but suboptimal sorting under constant decay is expressed below.

While allowing for constant decay rather than hyperbolic it the set of networks are further

restricted.

Theorem 3. Suppose there is supermodularity, a degree quota κ and each type has equal number

of agents then

(i) M̂ ⊆Mp−stb
δ≤δ̄ ;

(ii) M̂ ∩MmaxU
δ>

¯
δ = ∅;

where M̂ = Mp−srt:symm. loc−tree and thresholds
¯
δ, δ̄ ∈ (0, 1) where

¯
δ < δ̄

18The maximization of utility follows from the observation that each agent has at most κ links, so at distance p
there can be at most κ · (κ− 1)p−1 agents.

19An example is {i1i2, i1i3, i1i4, i2i5, i2i6, i3i7, i3i8, i4i9, i4i10, i5i7, i5i9, i6i8, i6i10, i7i9, i8i10} when n = 10, κ = 3
and N = {i1, i2, .., i10}.

34



Proof. We show properties (i) and (ii) together. Let µ be a network which is segregated into |X|
components where each component is a local tree with n/|X| agents. Let there be no transfers

between any agents.

As each subnetwork for a given type is a local tree it is stable against deviations by agents

of the same type - this follows as local trees provides maximal possible benefits among feasible

structures of the subnetwork for all agents in the subnetwork. Thus only two agents of different

types may have a profitable deviation which is feasible.

Let ι, j be agents of respectively types x and x̃. These two agents can deviate by each

deleting a link to ι′ and j′ respectively while jointly forming a link. The new network resulting

from deletion is denoted µ̂ = µ\{ιι′, jj′}. The move resulting from deletion and forming a link

is denoted µ̆ = µ̂ ∪ {ιj}. An alternative network is µ̃, the type-bridged network of µ, where the

links ιι′, jj′ are removed while the links ιj, ι′, j′ have been formed; thus µ̃ = µ̂ ∪ {ιj, ι′j′}.
Define the gross loss of benefits for i as ui(µ̂)− ui(µ) while the gross gains are ui(µ̃)− ui(µ̂).

There must exist a threshold of externalities δ̄ ∈ (0, 1) where µ is no longer pairwise stable as cost

of deviation monotonically decreases and approaches zero as δ → 1 while gains are monotonically

increasing. The monotonicity of losses is a consequence of the fact that gross loss consists of

shortest paths from µ, where ιι′ is included in the shortest path, which have longer length in µ̂

and thus are discounted more. Therefore the gross loss is mitigated by a higher δ as the longer

shortest paths are punished less. The monotonicity of gains follows as the gains consist of new

shortest paths to agents of type x̃ through ιj and j′ι′ the value of these increases for higher δ.

Exploiting the that Fact 1 and 2 from Appendix B.2 hold for local trees it follows that for

any other agent i of type x (i.e. i is in N\{ι, ι′} and xi = x):

ui(µ̃)− ui(µ) > δmin(piι(µ̃),piι′ (µ̃))[uι(µ̆)− uι(µ)].

Aggregating for all agents this implies:

U(µ̃)− U(µ) > [uι(µ̆)− uι(µ)] ·
∑
xi=x

δmin(piι(µ̃),piι′ (µ̃)) + [uj(µ̆)− uj(µ)] ·
∑
x′
i=x̃

δmin(pij(µ),pij′ (µ)).

where m = mn,κ. The inequality above implies the following: if U(µ̃) − U(µ) = 0 then

uι(µ̆)−uι(µ)+uj(µ̆)−uj(µ) < 0; U(µ̃)−U(µ) > 0 when uι(µ̆)−uι(µ)+uj(µ̆)−uj(µ) = 0. It can

also be argued that there must exist a threshold,
¯
δ, such that when δ =

¯
δ then U(µ̃)− U(µ) = 0

and that
¯
δ < δ̄. This follows as U(µ̃) − U(µ) < 0 for δ = 0 and U(µ̃) − U(µ) > 0 when

uι(µ̃)− uι(µ) + uj(µ̃)− uj(µ) = 0 as well as continuity of U(µ̃)− U(µ) in δ.

This entails that for δ >
¯
δ then µ̃ provide higher aggregate payoff. Moreover we showed

previously that for δ < δ̄ then µ is pairwise (Nash) stable. Thus we have proven properties (i)

and (ii).
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For constant decay the thresholds governing when sorting is respectively suboptimal and

stable, i.e.
¯
δ, δ̄, can be determined explicitly by solving polynomial equations for every deviation.

Moreover, for exact local trees there is a unique solution. In Figure 3 the two thresholds from

Theorem 3,
¯
δ(Ẑ), δ̄(Ẑ).

100 101 102 103
10-3

10-2

10-1

100

C
o
n
n
e
ct

in
g
 t

h
re

sh
o
ld

, 
δ

= 2, m= 1

Stability

Efficiency

100 101 102 103
10-4

10-3

10-2

10-1

100
= 10, m= 1

Stability

Efficiency

100 101 102 103
10-5

10-4

10-3

10-2

10-1

100
= 100, m= 1

Stability

Efficiency

100 101 102 103

Strength of complentarity, Z

10-4

10-3

10-2

10-1

100

C
o
n
n
e
ct

in
g
 t

h
re

sh
o
ld

, 
δ

= 100, m= 2

Stability

Efficiency

100 101 102 103

Strength of complentarity, Z

10-3

10-2

10-1

100
= 100, m= 3

Stability

Efficiency

100 101 102 103

Strength of complentarity, Z

10-3

10-2

10-1

100
= 100, m= 4

Stability

Efficiency

Figure 3: Visualization of thresholds for connecting from Theorem 3. The upper diagrams corre-
spond to cliques and the lower ones to exact local trees (where thresholds stem from Equations
32, 33, 38, 39).

The plots in Figure 3 are made for variations of exact local trees. The upper plots corresponds

to cliques with various sizes. The lower plot have fixed degree quota (κ=100) and the threshold

is simulated using pattern in utility that is demonstrated in Appendix B.2. The plots show

the scope for inefficiency, i.e. the gap between
¯
δ(Ẑ), δ̄(Ẑ), increases with the number of agents

involved. This makes sense intuitively as the two agents forming the link will fail to account for

an increasing number of indirect connections between the two groups. As the number of indirect

connections increases at with the squared with total number of agents then larger populations

will lead to larger gaps of inefficiency.

B.2 Local trees

This sub-appendix provides auxiliary results for deriving the generalization of suboptimal sorting.

We begin our focus on exact local trees and subsequently more generally in local tree networks,

see Definition 9 in the previous sub-appendix.

We will examine a generic network µ which is perfectly sorted and assume that the subset of

links for each type is a component that can be classified as either a local tree or an exact local

tree. Let networks µx and µx̃ be the components associated with respectively types x, x̃ ∈ X.

We will focus on three particular moves:

• Pairwise deletion of a link : Suppose two links ιι′, jj′ ∈ µ are deleted and agents ι and j
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have respectively type x and x̃; thus the two links are not from the same component. Let

the new network that results from removal of the links be denoted µ̂ = µ\{ιι′, jj′}.

• Pairwise formation of a link across types: This move presumes that both agents are also

deleting a link. We denote this as a move where agents ι and j form a link: µ̆ = µ̂ ∪ {ιj}.

• Double pairwise formation of a link across types: When two links are formed across types

in µ this corresponds to a non-pairwise deviation as it requires four coalition members.

We denote this as a move where both agents ι and j as well as ι′ and j′ form a link:

µ̃ = µ̂ ∪ {ιj, ι′j′}.

Finally let i denote a generic agent of type x. Let the shortest path in µ from i to either ι or

ι′ be denoted p̂i where p̂i = min(piι(µ̂), piι′(µ̂)). When p̂i = 0 then either i = ι or i = ι′.

Basic properties We exploit that µ is a local tree (see Definition 9). Throughout the remainder

of the paper let m = mn,κ (see Equation 29). We express each agent’s number of paths of length

p as a function of the number of agents and the degree quota:

#p
i (µ) = κ(κ− 1)p−1 − 1=m(p) ·∆#(n, κ), ∆#(n, κ) =

m∑
l=1

(κ · (κ− 1)l−1)− n, (30)

where 1=m(p) is the Dirac measure of whether p = m. Using the local tree structure we can

express utility without transfers of each agent:

ui(µ) =
m∑
l=1

#l
i(µ) · δl · z(x, x).

Exact local trees

Recall exact local trees are local trees where ∆#(n, κ) = 0. We will argue that this entails that

exact local trees have the essential property that for every pair of agents there is a unique shortest

path of at most length m and the number of paths for every agent is prescribed by Equation 30.

This can be deducted as follows.

Note first that the fact that the number of walks with at most length m starting in a given

agent i cannot exceed
∑m

p=1 #p
i (·). Recall also that local trees has the property that all agents

are reached within distance m. Moreover exact local trees has the property that for any agent i

it holds that n− 1 =
∑m

p=1 #p
i (µ); thus every shortest path with distances less than or equal to

m must be a unique path between the two particular agents.

The uniqueness and countability of paths can be used to infer the losses when links are either

removed or added to an exact local tree.
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Exact local trees - loss from deletion In order to examine the impact of deletion of a link

it is sufficient to analyze what happens to one component of types. This is sufficient as other

components as the conclusions are valid for all.

The deletion of link ιι′ implies that any pair of agents i, i′ whose (unique) shortest path in µ

includes the link ιι′ will have a new shortest routing path. For exact local trees we can exactly

determine the length of the new path. Let i be the agent whose distance to ι is least and let i′

be the agent whose distance to ι′ is least, i.e. piι(µ) < piι′(µ) and pi′ι′(µ) < pi′ι(µ).

First when link ιι′ is deleted we can show there is no shortest path between i and i′ in µ̂ with

length below 2m− p̂i − p̂i′ ; that is there is no ii′ whose shortest path in µ includes ιι′ such that

pii′(µ̂) < 2m − p̂i − p̂i′ . Suppose this was not true. Then there would exist an agent j who (1)

is on the new shortest path between i and i′ in µ̂ and (2) whose shortest path to agents ι and ι′

does not include the link ιι′ and (3) such that

pji(µ̂) + pji′(µ̂) < 2m− p̂i − p̂i′ ,

pji(µ̂) + pji′(µ̂) < 2m−min(piι(µ), piι′(µ))−min(pi′ι(µ), pi′ι′(µ)).

As by construction piι(µ) < piι′(µ) and pi′ι′(µ) < pi′ι(µ) then the expression above is equiva-

lent to: pji(µ̂) + pji′(µ̂) < 2m− piι(µ)− pi′ι′(µ). As the shortest path between i and ι as well as

between i′ and ι′ are unchanged from µ to µ̂ it follows that we can further rewrite into:

pji(µ̂) + pji′(µ̂) < 2m− piι(µ̂)− pi′ι′(µ̂)

However, the above statement implies that in network µ that either ι or ι′ has two paths with

lengths of at most m but this violates the definition of exact local trees.

We can now show that when link ιι′ is deleted the new shortest path between i and i′ in µ̂ has

a length of exactly 2m− p̂i − p̂i′ . This is shown by demonstrating there is an agent j such that

pji(µ̂) = m− p̂i and pji′(µ̂) = m− p̂i′ . This can be shown follows. Suppose that pji(µ̂) = m− p̂i.
We will demonstrate that pji′(µ̂) = m− p̂i′ . As pji(µ̂) = m− p̂i it follows that pjι(µ̂) = m. From

the definition of exact local trees there must exist a path of length less than m between j and

ι′ in network µ. As argued in the paragraph above neither of these paths can be strictly shorter

than m and consequently they must both be exactly m.

The number of shortest paths of length p which become altered for agent i is (κ−1)p−p̂i−1 for

p = p̂i, ..,m− 2,m− 1. This can be demonstrated as follows. If agent piι(µ) = m and piι′(µ) = m

then no shortest paths are altered; this is clear as agent i as none of the unique shortest paths

includes ιι′ as they have at most length m. If instead piι(µ) = m − 1 then the unique shortest

path from i to ι′ includes ιι′ is the last link; this implies a new shortest path if ιι′ is deleted.

Thus if piι(µ) = m − 1 then one shortest path of length m is lost. When piι(µ) = m − 2 then

one path of length m− 1 is lost by the same argument; moreover κ− 1 paths that has ιι′ as the
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second last link. By induction this can be done at higher order and thus for shorter distances.

Using the number of rerouted paths shown above we can establish the total number of shortest

paths in network µ̂ for agent i that has a length of p:

#p
i (µ̂) =

κ(κ− 1)p−1 − 1>p̂i(p) · (κ− 1)p−p̂i−1, p ≤ m

(κ− 1)2m−p̂i−p, p ∈ (m, 2m− p̂i].
(31)

By combining the count of shortest paths rerouted with their new length we can generalize

the loss for any agent from the deletion of link ιι′ when all agents are homogeneous of type x:

ui(µ)− ui(µ̂) =

m−p̂i∑
l=1

[
(κ− 1)l−1 ·

(
δl−1+p̂i − δ2m−(l−1)−p̂i

)]
· z(x, x). (32)

We can aggregate the losses across homogeneous agents of type x and we arrive at the following

expression:

U(µ)− U(µ̂) =

m∑
l=1

[
2l · (κ− 1)l−1 ·

(
δl−1 − δ2m−(l−1)

)]
· z(x, x). (33)

Exact local trees - gains from linking across types We move on to establishing the gains

of establishing a link in a perfectly sorted network where each component is an exact local tree.

The gains to agents ι and j of forming a link ιj are direct benefits and the new indirect

connections that are accessed through the link ιj. For agent ι the benefits from forming a link

with j can be computed with Equation 31 where the input length is added one (as ιj is added to

the shortest path). Recall µ̆ = µ ∪ {ιj}\{ιι′, jj′}.

uι(µ̆)− uι(µ) =

[
m∑
l=0

(κ− 1)l · δl +
m−1∑
l=0

(κ− 1)l · δ2m−l

]
· z(x, x̃). (34)

The above expression is relevant for evaluating the pairwise gains as it captures individual

benefits for a pairwise formation of a link by ι and j. However, we are also interested in the

sub-connected network as it allows to assess the efficiency. Suppose instead now that ι′ and j′

also form a link; thus ιj, ι′j′ are formed while ιι′, jj′ are deleted. Let µ̃ = µ ∪ {ιj, ι′j′}\{ιι′, jj′}.
Let i be an agent of type x and let p̂i still denote the least distance to either ι or ι′. We can

calculate the benefits for i when ιj, ι′j′ are formed. The benefits are the indirect connections to

agents of type x̃ with whom agent i has no connections in µ. The aim is to count the number of

paths of a given length.

For a given agent i′ of the other type x̃ it must hold that the shortest path in µ̃ between i, i′

either contains the link ιj or the link ι′j′, and thus the distance can be computed as follows:
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pii′(µ̃) = min[pij(µ̃) + pi′j(µ̃), pij′(µ̃) + pi′j′(µ̃)] (35)

We further restrict the above expression. We can use that i and i′ of type x̃ can be at

most 2m + 1 away from each other. This follows from the fact that piι(µ̃) + piι′(µ̃) = 2m

and pi′j(µ̃) + pi′j′(µ̃) = 2m. As piι(µ̃) + piι′(µ̃) = 2m and ιj, ι′j′ ∈ µ̃ then it must be that

pij + pij′ = 2m+ 2. These facts together entail we can rewrite Equation 35:

pii′(µ̃) = min[pij(µ̃) + pi′j(µ̃), pij′(µ̃) + pi′j′(µ̃)]

= min[pij(µ̃) + pi′j(µ̃), 4m+ 2− pij(µ̃)− pi′j(µ̃)]. (36)

From the above expression it follows that pii′ ≤ 2m + 1 as the expression is maximized for

pij + pi′j = 2m+ 1.

The number of shortest paths from i through ιj to agents of the other type x̃ can be found

using Equation 31 for agent ι adding extra distance 1 + p̂i:
20

• for distance p ∈ {1 + p̂i, ...,m+ 1 + p̂i} there are (κ− 1)p−1−p̂i agents;

• for distance p ∈ {m+ 2 + p̂i, ..., 2m+ 1} there are (κ− 1)2m+1−(p−1−p̂i).

The shortest paths from i not routed through ι but instead through ι′ are those where p+1+ p̂i >

2m + 1; from Equation 36 we know the new shortest path length is 4m + 2 − p − 1 − p̂i. The

number of shortest paths through ι′ in network µ̃ will be (κ−1)2m+1−(p−1−p̂i) and the new length

4m+ 2− p− 1− p̂i. These facts together imply:

#p
i (µ̃)−#p

i (µ̂) =


(κ− 1)p−1−p̂i , p ∈ {p̂i + 1, ..,m+ 1 + p̂i},

(κ− 1)2m+1−p−p̂i , p ∈ {m+ p̂i + 2, .., 2m+ 1},

(κ− 1)p+p̂i−2m−1, p ∈ {2m+ 1− p̂i, .., 2m}.

(37)

From the number of paths above we can derive the change in utility from when ιj, ι′j′ are
added to the network for a given agent i of type x.

ui(µ̃)− ui(µ̂) =


∑m
l=0(κ− 1)l · δl+p̂i

+
∑m−1
l=p̂i

(κ− 1)l · δ2m−l+p̂i

+
∑p̂i−1
l=0 (κ− 1)l · δ2m+l−p̂i

 · z(x, x̃). (38)

By aggregating over all agents of type the gain in benefits by forming ιj, ι′j′ is as follows:

U(µ̃)− U(µ̂) =

m∑
p=0

[ 1<m(p) · 2 · (κ− 1)p+

1=m(p) · (n− 2 ·
∑m−1
l=1 (κ− 1)l)

]
·


∑m
l=0(κ− 1)l · δl+p

+
∑m−1
l=p (κ− 1)l · δ2m−l+p

+
∑p−1
l=0 (κ− 1)l · δ2m+l−p


 · Z(x, x̃). (39)

20Shortest paths from i must contain both ιj and every link in the shortest path from i to j.
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Local trees

We can use the analysis above on exact local trees to bound the gains and losses for (non-exact)

local trees. Recall that exact local trees has the property that ∆#(n, κ) = 0 and for non-exact

local trees ∆#(n, κ) > 0. Thus the difference between exact and non-exact local trees is that for

a given agent the number of connected other agents at exactly distance m is lower for non-exact

local trees.

Using the analysis of exact local trees we can compute the bounds on loss of utility for a given

agent in the local when a link is deleted - this is done by reusing Equation 31 as follows.

We can discount the number of agents initially at distance m by ∆#(n, κ). Moreover, the new

distance between agents i and i′ after deletion of the link ιι′ is at least min(pii′ , 2m− 2− p̂i− p̂i′)
at most 2m − p̂i − p̂i′ .21 From these two facts we can derive the bound on loss of utility when

ιι′ is deleted. The upper bound on loss (in terms of magnitude) is when new shortest paths

have most distance, i.e. 2m − p̂i − p̂i′ ; the lower bound is found when new distance is least, i.e.

min(pii′ , 2m− 2− p̂i − p̂i′):

ui(µ)− ui(µ̂) ≤
m−p̂i∑
l=1

[
max(0, (κ− 1)l−1 − 1=m(l) ·∆#(n, κ))

(
δl−1+p̂i − δ2m−(l−1)−p̂i

)]
· z(x, x), (40)

ui(µ)− ui(µ̂) ≥
m̃∑
l=1

[
(κ− 1)l−1 ·

(
δl−1+p̂i − δ2m−(l+1)−p̂i

)]
· z(x, x), m̃ = min(m− 1,m− p̂i). (41)

Fact 1. If µ is perfectly sorted and consists of |X| components that each constitute a local tree

with n/|X| agents, then for any agent i of type x where p̂i > 0:

ui(µ̂)− ui(µ) > δp̂i · [uι(µ̂)− uι(µ)], p̂i = min(piι(µ̂), piι′(µ̂)). (42)

Proof. Inequality 42 can be rewritten into: δp̂i ·[uι(µ)−uι(µ̂)]−[ui(µ)−ui(µ̂)] > 0. This inequality

is equivalent to the expression below (derived by substituting in Inequality 41 for agent ι and

Inequality 40 for agent i):

δp̂i ·
m−1∑
l=1

[
(κ− 1)l−1 ·

(
δl−1 − δ2m−(l+1)

)]
−
m−p̂i∑
l=1

[
(κ− 1)l−1

(
δl−1+p̂i − δ2m−(l−1)−p̂i

)]
> 0,

m−p̂i∑
l=1

[
(κ− 1)l−1 ·

(
δ2m−(l+1)−p̂i − δ2m−(l+1)+p̂i

)]
+

m−1∑
l=m−p̂i+1

[
(κ− 1)l−1

(
δl−1+p̂i − δ2m−(l−1)−p̂i

)]
> 0.

As it holds that 2m−(l+1)−p̂i < 2m−(l+1)+p̂i and it holds that l−1+p̂i < 2m−(l−1)−p̂i
(equivalent to l < m+ 1− p̂i) the above inequality is satisfied.

21The upper bound follows from the fact that for any two agents i and i′ in the local tree there is still always
an agent j at distances pij = m − p̂i and pi′j = m − p̂i′ . The lower bound can be established by repeating an
argument used for exact local trees. If the new distance between two agents i and i′ after deletion of ιι′ had been
less than min(pii′(µ), 2m− 2− p̂i − p̂i′) then the following would be true. There would be multiple shortest paths
of length less than or equal to m − 1 between either (ι and j) or (ι′ and j). This would violate the property of
local trees that all shortest paths of length ≤ m− 1 are unique.
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We can also derive bounds on the gains from connecting across types for local trees. We will

not do this explicitly but instead use Definition 10 on symmetric losses in local trees. This allows

to express our next result:

Fact 2. For the perfectly sorted network µ which consists of |X| network components which each

constitute a local tree of n/|X| agents that has symmetric losses then it holds that for agents i, ι

of type x and p̂i > 0

ui(µ̃)− ui(µ̂) ≥ δp̂i · [uι(µ̆)− uι(µ̂)], p̂i = min(piι(µ̂), piι′(µ̂)). (43)

Proof. It holds that uι(µ̃)− uι(µ̂) ≥ uι(µ̆)− uι(µ̂) as µ̃ ⊆ µ̆ (thus all shortest paths in µ̃ cannot

have a length that exceeds that in µ̆). Therefore it suffices to show:

ui(µ̃)− ui(µ̂) ≥ δp̂i · [uι(µ̃)− uι(µ̂)]. (44)

As the local tree has symmetric losses it follows that uι(µ̃) − uι(µ̂) = uι′(µ̃) − uι′(µ̂); this

follows from the fact that they both gain an equal number of new shortest paths through j, j′,

this follows as as j, j′ have same number of paths after deletion of jj′ due to symmetric losses.

This entails that without loss of generality we can assume that piι = p̂i as otherwise we could

substitute ι with ι′ and conduct the analysis again.

For ι and some agent i′ of type x̃ it holds that pii′(µ̃) ≤ pιi′(µ̃)+ p̂i. This follows as there exists

a path between i, ι and ι, i′ with respectively lengths pιi′(µ̃) and p̂i; thus pii′(µ̃) ≤ pιi′(µ̃) + p̂i.

This implies the following inequality must hold:

∑
xi′=x̃

δpii′ (µ̃) ≥ δpιi(µ̃) ·
∑
xi′=x̃

δpιi′ (µ̃).

As uι(µ̃)− uι(µ̂) =
∑

xi=x̃

∏pιi′ (µ̃)
l=1 δrl · z(x, x̃) and ui(µ̃)− ui(µ̂) =

∑
xi=x̃

∏pii′ (µ̃)
l=1 δrl · z(x, x̃)

it follows that Inequality 44 holds which proves our fact.
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